from collections import namedtuple from math import sqrt import random try: import Image except ImportError: from PIL import Image Point = namedtuple('Point', ('coords', 'n', 'ct')) Cluster = namedtuple('Cluster', ('points', 'center', 'n')) def get_points(img): points = [] w, h = img.size for count, color in img.getcolors(w * h): points.append(Point(color, 3, count)) return points rtoh = lambda rgb: '#%s' % ''.join(('%02x' % p for p in rgb)) def colorz(filename, n=3): img = Image.open(filename) img.thumbnail((200, 200)) w, h = img.size points = get_points(img) clusters = kmeans(points, n, 1) rgbs = [map(int, c.center.coords) for c in clusters] return map(rtoh, rgbs) def euclidean(p1, p2): return sqrt(sum([ (p1.coords[i] - p2.coords[i]) ** 2 for i in range(p1.n) ])) def calculate_center(points, n): vals = [0.0 for i in range(n)] plen = 0 for p in points: plen += p.ct for i in range(n): vals[i] += (p.coords[i] * p.ct) return Point([(v / plen) for v in vals], n, 1) def kmeans(points, k, min_diff): clusters = [Cluster([p], p, p.n) for p in random.sample(points, k)] while 1: plists = [[] for i in range(k)] for p in points: smallest_distance = float('Inf') for i in range(k): distance = euclidean(p, clusters[i].center) if distance < smallest_distance: smallest_distance = distance idx = i plists[idx].append(p) diff = 0 for i in range(k): old = clusters[i] center = calculate_center(plists[i], old.n) new = Cluster(plists[i], center, old.n) clusters[i] = new diff = max(diff, euclidean(old.center, new.center)) if diff < min_diff: break return clusters