% This script will carry out error analysis R = 0.5; % 0.5Ohm L = 0.0015; % 1.5mH data_points = 100000; h_divisions = 1000; % Go on for a time constant time_constant = L/R; step = time_constant/data_points; T=150e-6; % 150us f = 1/T; w_c = 2*pi*f; A = 6; Vin = @(t) A*cos(w_c*t); current_initial=0; % e^m is the integratingn factor % m = 0.5/0.0015; % Solution is made by multiplying by integrating factor and % then integrating both sides A = 6*R/(R^2 + (w_c*L)^2); B = 6*w_c*L/(R^2 + (w_c*L)^2); current_exact = @(t) A*cos(w_c*t) + B*sin(w_c*t) - A*exp((-R/L)*t); %current_exact = @(t) 3/(m^2+w_c^2)*(2*m*cos(w_c*t) + 2*w_c*sin(w_c*t)); Vout_exact = @(t) Vin(t) - current_exact(t)*R; for k=1:h_divisions [time_array, Vout_array] = ralston(R, L, Vin, current_initial, step*k, data_points*step); for j=1:data_points/k error_array(j) = Vout_exact(time_array(j)) - Vout_array(j); % Vout_plot(j) = Vout_exact(time_array(j)); end % plot(time_array, Vout_array); % figure; % plot(time_array, Vout_plot); % max_array(k) = max(error_array); max_t(k) = k*step; end loglog(max_t, max_array);