% This script will carry out error analysis R = 0.5; % 0.5Ohm L = 0.0015; % 1.5mH data_points = 10000; % Go on for a time constant time_constant = L/R; step = time_constant/data_points; T=150e-6; % 150us f = 1/T; w_c = 2*pi*f; A = 6; Vin = @(t) A*cos(w_c*t); current_initial=0; % e^m is the integratingn factor m = 0.5/0.0015; % Solution is made by multiplying by integrating factor and % then integrating both sides current_exact = @(t) 3/(m^2+w_c^2)*(2*m*cos(w_c*t) + 2*w_c*sin(w_c*t)); Vout_exact = @(t) Vin(t) - current_exact(t)*R; [time_array, Vout_array] = ralston(R, L, Vin, current_initial, step, data_points*step); for j=1:data_points error_array(j) = Vout_exact(time_array(j)) - Vout_array(j); % Vout_plot(j) = Vout_exact(time_array(j)); end % plot(time_array, Vout_array); % figure; % plot(time_array, Vout_plot); % % max(Vout_plot-Vout_array) loglog(time_array, error_array);