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Finite Differences for PDE

Comments on implementation:

We first create a matrix to implement our finite difference method on. The two
dimensions of the matrix and time and displacement.

The first row of the matrix (in other words at time t = 0) is populated with the
initial conditions.

The rest of the matrix is populated in a loop from the intial conditions and the
boundary conditions.

In the loop, for each value of m, the time itterator of the matrix, we set the the
first and last possible displacement index’s to our desired boundary conditions.
We then we itterated trough each displacement step and apply the central
algorithm to it. The exact implementation of this loop can be seen in the
included code.

Chosing h and k

Chosing h (the displacement step) and the appropirate k (time step) is not a
trivial task. Picking a very small time step is computationally expensive (requires
a big matrix and a computer with more memory), and we generally want to
compare the temperature distribution at larger time increments (as shown in
the instruction sheet).

The Von Neumann stability anlaysis shows that in order to produce a stable
results it is required:

k

h2 ≤
1
2
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Since we want to produce long simulations with a small distance step, but don’t
want to see extremely small steps in the graph, we set the time step to satisfy
the equality given a value for h. Even then, the steps are hardly small so when
graphing we only a fraction of the time steps from the whole range. In our
implementation we print 10 equaliy spaced lines from the time range.

Tent Function

y0(x) =
{

2x for x ∈ [0, 0.5]
2− 2x for x ∈ [0.5, 1]
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Figure 1: Tent Function

In figure 1 we can see the tent function applied as the initial condition to a one
dimensional rod of length 1. The coloured lines represent the approximated
temperature at times increments of 0.1, all the way up to 1.0. Because of the
boundary conditions the end points are bound to zero degrees and as a result
the temperature of the rod decreases. As t approaches infinity the temperate of
the rod will approach zero, where the center point which started as the highest
temperature and is furthest away from the boundaries maitains the highest
temperature of all points.
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Sinusoidal Function

y0(x) = sin 2πx
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Figure 2: Sinusoidal Function A

In figure 2 we perform the finite difference method on to a sinusoid. The result
yet again is decreasing temperature as the boundaries are zero. The temperature
decreases such that the resulting distribution continues to be sinusoidal, only
with a different amplitude. The left and right side fo the rod have identical
but opposite amplitudes, and due to this equilibrium the center point at 0.5
displacement stays at 0 temperature.

y0(x) = | sin 2πx|

In figure 3 we use the same initial condition function, only this time we take the
absolute value of it so what was negative before is now positive. It is interesting
to note that the resulting distribution at t 6= 0 is very different from the absolute
value of that in 3. Point 0.5 no longer sits at 0 and is instead heated due to
neighboring elements until it becomes the hottest point.
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Figure 3: Sinusoidal Function B

Square Function

y0(x) =
{

0 for x ∈ [0, 0.25] ∪ [0.75, 1]
1 for x ∈ [0.25, 0.75]

Applying the “square” function in figure 4 produces interesting results. Where
as in figure 3 the center heated up while the corners cooled down the opposite
happens initially, as the curve straightens out. This happens because of the
extreme temperature difference that we introduced.

Double Tent function

!Double Tent](cond4.pdf)

Making two symmetric tent functions with oposite signs like in figure ,shows a
result like that in figure 1, with an artificial boundary of zero in the centre due
to the symmetry.
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Figure 4: Square Function

Varying boundary conditions

It is possible to give the algorithm an initial condition which does not match
the boundary conditions. In figure 5 we can see the initial conditions we used in
figure 2, but we instead set the left boundary to 0.5 and the right boundary to 1.
As the boundaries are forced to assume the temperature given they quickly pull
the graph away from the original initial conditions and towards themselves. As
t approaches infintity 5 will become a straight line between the two boundaries
at 0.5 and 1.

In 6 we . . .

See figure 7 for more information.
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Figure 5: Non-matching initial and boundary conditions
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Figure 6: Non Zero Boundary Conditions
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Figure 7: Varying Boundary Conditions
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