
Numerical Analysis

Group 10: Forbelets

Imperial College, March 2017

Grahps Benedikt
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Figure 1: mytitle

Finite Differences for PDE

Comments on implementation:

We first create a matrix to implement our finite difference method on. The two
dimensions of the matrix and time and displacement.
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The first row of the matrix (in other words at time t = 0) is populated with the
initial conditions.

The rest of the matrix is populated in a loop from the initial conditions and the
boundary conditions.

In the loop, for each value of m, the time iterate of the matrix, we set the first
and last possible displacement index’s to our desired boundary conditions. We
then we iterate trough each displacement step and apply the central algorithm
to it. The full implementation of this loop can be seen in the included code in
ex4.m.

Um+1
j = vUm

j−1 + (1− 2v)Um
j + vUm

j+1

= Um
j + v(Um+1

j − 2Um
j + Um

j+1)

Where
v = k

h2

Writing this in matlab as a two dimensional matrix is very similar.

u(m+1,j) = u(m,j) + ((k/(h^2))*(u(m,j+1) - 2*u(m,j) + u(m,j-1)));

Physicaly this means that if that if the sum of the temperature of the two
adjacent points is higher is higher than two times the temperature of the given
point, the temperature of the selected point will go up after one time step, while
if the two adjacent points sum up to less than twice our current temperature,
our next temperature will decrease.

As time tends to infinity the temperature will tend towards the boundary condi-
tions as they will set the temperature of their neghbours which will propagate
trough the curve.

Choosing h and k

Choosing h (the displacement step) and the appropirate k (time step) is not a
trivial task. Picking a very small time step is computationally expensive (requires
a big matrix and a computer with more memory), and we generally want to
compare the temperature distribution at larger time increments (as shown in
the instruction sheet).

The Von Neumann stability anlaysis shows that in order to produce a stable
results it is required:

k

h2 ≤
1
2
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Since we want to produce long simulations with a small distance step, but don’t
want to see extremely small steps in the graph, we set the time step to satisfy
the equality given a value for h. Even then, the steps are hardly small so when
graphing we only a fraction of the time steps from the whole range. In our
implementation we print 10 equaliy spaced lines from the time range.

Tent Function

y0(x) =
{

2x for x ∈ [0, 0.5]
2− 2x for x ∈ [0.5, 1]

0 0.2 0.4 0.6 0.8 1

Displacement

0

0.2

0.4

0.6

0.8

1

T
em

pe
ra

tu
re

t = 0
t = 0.01
t = 0.02
t = 0.03
t = 0.04
t = 0.05
t = 0.06
t = 0.07
t = 0.08
t = 0.09
t = 0.1

Figure 16: Tent Function

In figure 16 we can see the tent function applied as the initial condition to a
one dimensional rod of length 1. The coloured lines represent the approximated
temperature at times increments of 0.1, all the way up to 1.0. Because of the
boundary conditions the end points are bound to zero degrees and as a result
the temperature of the rod decreases. As t approaches infinity the temperate of
the rod will approach zero, where the center point which started as the highest
temperature and is furthest away from the boundaries maintains the highest
temperature of all points.

Sinusoidal Function

y0(x) = sin 2πx
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Figure 17: Sinusoidal Function A

In figure 17 we perform the finite difference method on to a sinusoid. The result
yet again is decreasing temperature as the boundaries are zero. The temperature
decreases such that the resulting distribution continues to be sinusoidal, only
with a different amplitude. The left and right side fo the rod have identical
but opposite amplitudes, and due to this equilibrium the center point at 0.5
displacement stays at 0 temperature.

y0(x) = | sin 2πx|

In figure 18 we use the same initial condition function, only this time we take the
absolute value of it so what was negative before is now positive. It is interesting
to note that the resulting distribution at t 6= 0 is very different from the absolute
value of that in figure 18. Point 0.5 no longer sits at 0 and is instead heated due
to neighboring elements until it becomes the hottest point.

Square Function

y0(x) =
{

0 for x ∈ [0, 0.25] ∪ [0.75, 1]
1 for x ∈ [0.25, 0.75]

Applying the “square” function in figure 19 produces interesting results. Where
as in figure 18 the center heated up while the corners cooled down the opposite
happens initially, as the curve straightens out. This happens because of the
extreme temperature difference that we introduced.
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Figure 18: Sinusoidal Function B
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Figure 19: Square Function
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Double Tent function
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Figure 20: Double Tent

Making two symmetric tent functions with oposite signs like in figure 20,shows a
result like that in figure 16, with an artificial boundary of zero in the centre due
to the symmetry.

Varying boundary conditions

It is possible to give the algorithm an initial condition which does not match the
boundary conditions. In figure 21 we can see the initial conditions in blue which
attempt to set the corners of the rod to -1 and 1 respectively. As the boundaries
are forced to to zero they quickly pull the graph away from the original initial
conditions and towards themselves. As t approaches infinity 21 will become a
straight line between the two boundaries. Again we have an equilibrium and a
constant temperature of zero in the middle.

Non Zero boundary conditions

In 22 we use the same initial conditions as in figure 17, however this time we set
the boundary conditions to be 0.5 and 1. Yet again this forces the temperature
curve towards them. The equilibrium at 0.5 displacement is no longer maintained
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Figure 21: Non-matching initial and boundary conditions
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Figure 22: Non Zero Boundary Conditions
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as as the boundaries are different and non-zero. As t approaches infinity we will
get a straight line between 0.5 and 1 temperature.

Time varying boundary conditions
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Figure 23: Varying Boundary Conditions

Finally in every loop itteration we can change the boundary condition based on
the elapsed time. We can see the effect of doing so on the original tent function
in figure 23. The boundaries move from 0 degrees to 0.5 degrees at a rate of
5 degrees per second. The result is the function bending back on itself as the
boundaries start moving up.
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