VERI Logbook

Information

Verilog Sources

All the code from this experiment can be cloned from https://git.skozl.com/e2-
verilab

git clone 'https://git.skozl.com/e2-verilab'

Part 1

https://git.skozl.com/cgit.cgi/e2-verilab.git /tree/part__1

Exerise 1:

Timing Analysis

Timequest is a tool in the Quartus suit that allows us to see the delay between
the inputs and the outputs of our system. The delay is in microseconds. For
insatnce we can see that if we change SWO0 it will take around 9 microseconds
for the signals to propagate and reach one of the LED’s of the 7-segment display.

The picture shows us that there is a timing depends on wether the input and
output rise and fall. This difference arises because of the fact that the performance
within the gates is different for the N-MOS and P-MOS elements.

Timequests geneates different reports for the slack depending on the temperature
at which the device is running. slack varies based on temperature and voltage
we run the gates at and they will hence perform differently. It might be the case
that our timing is fine for 0C but when the device heats the timing breaks and we
introduce glitches. Therefore it is important to consider a range of temperatures
under which the device might operate..

Furthermore we can observe that our design uses 11 pins (7 for the display + 4
switches) and 4 logic units.

This is an interesting result since we have 4 inputs and 7 outputs, which can be
implement using seven copies of a 4 input look up table, one for each segment.
However since we use only 4 it is clear that the Quartus software is doing some
sort of optimisations during the synthesis of our hardware definition.

https://git.skozl.com/cgit.cgi/e2-verilab.git/tree/part_1

Set Operating Conditions @Ma = | Propagation Delay
@) Slow 1100mV 85C Model Input Port Cutput Port RR RF FR FF
) G R 1 SWIa HEX[0] 8469 8618 8881 9138
- 2 sw HEX[1] 8669 9017 9181 9583
() Fast 1100m\V 85C Model 3 swo HEX(Z] 8896 0197
() Fast 1100mV 0C Model 4 SWI0) HEX[3] 3.113 3212 3.621 3774
5 Swig HEX[4] 8.886 9.712
& sw HEX[S] a7 9718
7 SW HEX[E] 8209 8226 8720 8745
&8 5w HEX[0] 8127 8297 8669 8821
9 W[HEX[1] 8422 BTID BOTD 9244
R @e], SW[1] HEX[2] 8.335 9.095
EH TimeQuest Timing Analyzer Summary | |11 SW[] HEX[3] 7.910 7858 8461 85486
» B Advanced V0 Timing 12 SWH] HEX[4] 8871 9.086
4 [~ Datasheet Report 13 SW] HEX[S] 8530 8861 9079 9387
FEE Propagation Delay 14 SW] HEX[E] 7867 7805 ©409 8429
B Minimum Propagation Delay 15 SW[A HEX[0] 86D BBO3 0202 9479
16 SW2 HEX[1] 9.144 9.960
17 SW[2 HEX[2] 8.3839 9.763
18 SWZ HEX[3] 8585 9.151
Tasks @& =||19 swE HEX[4] 9.086 10.053
+ BZ Open Project... ~ 20 swz HEX[5] 9.245 10.095
I~ metist Setup 2 swe HEX[E] 2409 9.087
' P Create Timing Netlist 22 SWE HEX[0] 8.277 8.505
« P Read SDC File 23 sWI HEX[1] 8572 9.443
+ P Update Timing Netlist 24 |SW) HEX[] 8.505 9.198
B ResetDesign 25 SWI HEX[3] 8012 8639
B =et Anerating Conditinns T8 SW[3] HEX([4]
o 111} > 27 swi3 HEX[5] 8673 9.583

Figure 1: timing for 85C

Exercise 3:

Trivial exerices requiring to instantate the module 3 times. The MSB 2 bits
use a module by themselves however that is not a problem becaus Quartus will
optimise out the redundant logic.

Experiment 4

The algoritm used to convert pure binary numbers to binary coded decimals
is fairly trivial however it’s implementation may not be. As I approached the
challenge before looking at Proffesors Cheungs solution I implement my on which
can be found it the repository. The pseudo code goes like so:

for (i=3; i>=0; i=i-1)
begin
if (BCD >= 5)
BCD = BCD + 3;

BCD = BCD << 1;
BCD[0] = Sw[il;
end

From the reports we can see that our 10-bit binary to bed out on the displays
used 38 ALMS.

Part 2

https://git.skozl.com/cgit.cgi/e2-verilab.git /tree/part_ 2

Exercise 5:

Difficult part here is confugiring the ModelSim correctly once set up we can
input commands.

As the clock is 50MHz, nd as we expect in modelsim we can see the clock cycles
of length 20ns. Each of these causes the value of the counter to inrcease if enable
is high. If enable is set to low the counter pauses at the last value and will then
resume from the same once enable is high again.

Exercise 6:

Experiment involves chaining up exercises from part_1 with the previously
created counter. The key thing here is to make the reset and enable to be active
low by design.

https://git.skozl.com/cgit.cgi/e2-verilab.git/tree/part_2

When the button is pressed the counter counts to quickly for it to be visibly
going trough the values, but based on our previous modelsim exercise we can
assume so.

Introducing another counter of size log_2(50k) with a reset at 50k and feeding
anding it with the enable signal we can see the 16 bit counter now counting up
every millisecond.

From report we can see that: Design works using 76 ALMS, which is quite a
sizable increase. However when you add the numbers up it makes sense. Each
7 segment decoder takes 4ALM’s each, the 50k counter takes 16 registers, the
binary to bed converter will use around 30 ALMS for its shifting and the inputs
need to be buffered. It now becomes hard to count exactly.

Predicted maximum frequency from the reports are: 0C is 411 MHz 85C is 425
MHz

We are running at 50MHz which is well belowe the maximum frequency so we
should not be experiencing any glitches due to bad timing.

It is red because we have unconstrained output ports paths that can cause
problems at high frequencies. Since our project does not interface with any other
digital logic this is not a problem for us but in a big project with many different
modules it is important to define some constraits which must not be broken.

Experiment 7 numbers

Printing the linear feedback shift registers in hex with the 7 segment decoders
and writing implementing the LSFR we get:

SHIFT <= {SHIFT[5:0],SHIFT[6] ~ SHIFT[0]};

01
03
o7
OF
1F
3f
7
Te
7d
Ta
75
6a

Working it out by hand this is what we expect.

Experiment 8 and 9

This challenge is probably the hardest part of the experiment as it took a
lot of time to correctly implement the finite state machine and the top level
with correctly function modules. It can be found in the git repository and
is implemented exactly as suggested with one key difference. The desingn
recommends a second divider by 2500 after the 50000 divider, which would give
you a clock every 2.5s instead of 0.5s. Therefor the second divider is implemented
as a divider by 500.

Experiment 9 is exactly the same except we include an extra state where we
enable a counter and wait for input.

I(FSM for ex9)(https://skozl.com/plots/fsm.png)

Part 3

https://git.skozl.com/cgit.cgi/e2-verilab.git/tree/part_ 3

Experiment 10

As CS goes low and LD goes high the following gets transmited over serial: * 3
bits of cmd, specifying: * zero = 0 * buffer = 1 * gain = 1 * power = 1 * 10 bits
of our transmited value * h23b = 10 0011 1011 * 2 bits padding set to 0’s = 00

So we transmit the sequence:

cmd 2 3 b n

0111 10 0011 1011 0O

Figure 2: timing diagram

Experiment 10

We can meassure output voltage from 0 to 3.3V depending on the input, this is
a DC voltage as we expect. Meassuring with scope we observe:

SCK is a train of ipulse at 10KHz SDI Changes according to state of switches

https://git.skozl.com/cgit.cgi/e2-verilab.git/tree/part_3

Experiment 11
We can now meassure both channels and see that they produce the same output
range of 0 to 3.3V out and seem to be identical at DC.

The pwm and dac seem to produce the same output after the filter. Howevere if
we meassure the pwm out before the filter we get a high frequency spikes (which
is how pwm is produced).

Experiment 12

All the values match with first being 512 and last being 508.

Analysing the values in the rom with the switches we can see that is we increase
the value of the switches the value displayed on the hex display goes up and
down imitating the amplitude of a cycle of a sine wave.

Experiment 13

The output from the dac after the filter is staggered every 100us , which represents
10kHz, or in steps, while that of the PWM is smooth. Both produce a ~1khz
sine wave.

Experiment 14

Instead of using a counter which adds a static one you can increment by a value
as defined by the SW as you like, allowing you to skip samples.

The formula is as fololws:

SW * 10k / 1k

Which translates to a multiply by 0x2710 and a dividbe by 1000 or 2”10, which
is the same as shifting right 10 bits, which from 24 gives you 14 left (the 14
MSB).

Part 4

https://git.skozl.com/cgit.cgi/e2-verilab.git /tree/part_ 4

https://git.skozl.com/cgit.cgi/e2-verilab.git/tree/part_4

Experiment 16

The adc digitalise values as positive numbers shifted up by 2°8 + 2°7 = 384 =
0x180 This is the value that we get on the 7 segment display when we have no
input, and hence our wave is shifted by that amount.

Since our DAC is 10 bits we need to set the new offset to be at half way in our
range which is 512. This is all that our processor does.

After implementing the described curcuit we get the sound we play in out. All
we do is digitilise the sound and reproduce it.

After using the multiply module the sound observed is louder as expected.
However it is not 4 times louder!

Experiment 17

Pulsegen

Waiting data_valid

high for 1 cycle

Waiting for data_valid low

Had to create a finite state machine for this pulse_gen module.

To operate the fifo: Do not read until full, after it is full it will stay full and we
should keep reading it. Every clock cycle keep wrreq high and feed it the data
out. Take the output of the fifo shift it with sign extention and add it to the
dac input.

To multiply times a factor beta we shift the number to reduce its amplitude we
need to sine extend it, otherwise we will probably get distrtion/clipping and
wrong volume for the echo.

Experiment 18

Same as 16, but we don’t want positve feedback so we subtract (same amplitue
but down). And switch ouptut and input, very minor modifications. You can
steal hear the sound wave with the same amplitude just inverted. If we had
positive feedback we would go to the rail and get stuck there.

Experiment 19

Why 0x666 multiplier: By multiplying by 1638 and then removing the least
significant ten bits we effectively multiply by 1.64

Using all 8192 bits of ram would cause a delay of 0.819s (when all 9 switches are
high). The coffecients we have to multiply to get ms is:

0.8192/511 % 1000 = 1.603

Which is close to what we are doing.

	VERI Logbook
	Information
	Verilog Sources
	Part 1
	Exerise 1:
	Exercise 3:
	Experiment 4

	Part 2
	Exercise 5:
	Exercise 6:
	Experiment 7 numbers
	Experiment 8 and 9

	Part 3
	Experiment 10

	Experiment 10
	Experiment 11
	Experiment 12
	Experiment 13
	Experiment 14

	Part 4
	Experiment 16
	Experiment 17
	Experiment 18
	Experiment 19

