//------------------------------ // Module name: bin2bcd_8 // Function: Converts an 8-bit binary number to 3 digits BCD // .... it uses a shift-and-add3 algorithm // Creator: Peter Cheung // Version: 1.0 // Date: 17 Sept 2016 //------------------------------ // For more explanation of how this work, see // ... instructions on wwww.ee.ic.ac.uk/pcheung/teaching/E2_experiment module bin2bcd_8 (B, BCD_0, BCD_1, BCD_2); input [7:0] B; // binary input number output [3:0] BCD_0, BCD_1, BCD_2; // BCD digit LSD to MSD wire [3:0] w1,w2,w3,w4,w5,w6,w7; wire [3:0] a1,a2,a3,a4,a5,a6,a7; // Instantiate a tree of add3-if-greater than or equal to 5 cells // ... input is w_n, and output is a_n add3_ge5 A1 (w1,a1); add3_ge5 A2 (w2,a2); add3_ge5 A3 (w3,a3); add3_ge5 A4 (w4,a4); add3_ge5 A5 (w5,a5); add3_ge5 A6 (w6,a6); add3_ge5 A7 (w7,a7); // wire the tree of add3 modules together assign w1 = {1'b0, B[7:5]}; // wn is the input port to module An assign w2 = {a1[2:0], B[4]}; assign w3 = {a2[2:0], B[3]}; assign w4 = {1'b0, a1[3], a2[3], a3[3]}; assign w5 = {a3[2:0], B[2]}; assign w6 = {a4[2:0], a5[3]}; assign w7 = {a5[2:0], B[1]}; // connect up to four BCD digit outputs assign BCD_0 = {a7[2:0],B[0]}; assign BCD_1 = {a6[2:0],a7[3]}; assign BCD_2 = {2'b0,a4[3],a6[3]}; endmodule