//------------------------------ // Module name: spi2dac // Function: SPI interface for MPC4911 DAC // Creator: Peter Cheung // Version: 1.3 // Date: 8 Nov 2016 //------------------------------ module spi2dac (clk, data_in, load, dac_sdi, dac_cs, dac_sck, dac_ld); input clk; // 50MHz system clock of DE0 input [9:0] data_in; // input data to DAC input load; // Pulse to load data to dac output dac_sdi; // SPI serial data out output dac_cs; // chip select - low when sending data to dac output dac_sck; // SPI clock, 16 cycles at half clk freq output dac_ld; //-------------Input Ports----------------------------- // All the input ports should be wires wire clk, load; wire [9:0] data_in; //-------------Output Ports----------------------------- // Output port can be a storage element (reg) or a wire reg dac_cs, dac_ld; wire dac_sck, dac_sdi; parameter BUF=1'b1; // 0:no buffer, 1:Vref buffered parameter GA_N=1'b1; // 0:gain = 2x, 1:gain = 1x parameter SHDN_N=1'b1; // 0:power down, 1:dac active wire [3:0] cmd = {1'b0,BUF,GA_N,SHDN_N}; // wire to VDD or GND // --- Submodule: Generate internal clock at 1 MHz ----- reg clk_1MHz; // 1Mhz clock derived from 50MHz reg [4:0] ctr; // internal counter parameter TIME_CONSTANT = 5'd24; // change this for diff clk freq initial begin clk_1MHz = 0; // don't need to reset - don't care if it is 1 or 0 to start ctr = 5'b0; // ... Initialise when FPGA is configured end always @ (posedge clk) // if (ctr==0) begin ctr <= TIME_CONSTANT; clk_1MHz <= ~clk_1MHz; // toggle the output clock for squarewave end else ctr <= ctr - 1'b1; // ---- end internal clock generator ---------- // ---- Detect posedge of load with a small state machine // .... FF set on posedge of load // .... reset when dac_cs goes high at the end of DAC output cycle reg [1:0] sr_state; parameter IDLE = 2'b00,WAIT_CSB_FALL = 2'b01, WAIT_CSB_HIGH = 2'b10; reg dac_start; // set if a DAC write is detected initial begin sr_state = IDLE; dac_start = 1'b0; // set while sending data to DAC end always @ (posedge clk) case (sr_state) IDLE: if (load==1'b0) sr_state <= IDLE; else begin sr_state <= WAIT_CSB_FALL; dac_start <= 1'b1; end WAIT_CSB_FALL: if (dac_cs==1'b1) sr_state <= WAIT_CSB_FALL; else sr_state <= WAIT_CSB_HIGH; WAIT_CSB_HIGH: if (dac_cs==1'b0) sr_state <= WAIT_CSB_HIGH; else begin sr_state <= IDLE; dac_start <= 1'b0; end default: sr_state <= IDLE; endcase //------- End circuit to detect start and end of conversion //------- spi controller designed as a state machine // .... with 17 states (idle, and S1-S16 // .... for the 16 cycles each sending 1-bit to dac) reg [4:0] state; initial begin state = 5'b0; dac_ld = 1'b0; dac_cs = 1'b1; end always @(posedge clk_1MHz) begin // default outputs and state transition dac_cs <= 1'b0; dac_ld <= 1'b1; state <= state + 1'b1; // move to next state by default case (state) 5'd0: if (dac_start == 1'b0) begin state <= 5'd0; // still waiting dac_cs <= 1'b1; end 5'd16: begin dac_cs <= 1'b1; dac_ld <= 1'b0; state <= 5'd0; // go back to idle state end default: begin // all other states dac_cs <= 1'b0; dac_ld <= 1'b1; state <= state + 1'b1; // default state transition end endcase end // ... always // shift register for output data reg [15:0] shift_reg; initial begin shift_reg = 16'b0; end always @(posedge clk_1MHz) if((dac_start==1'b1)&&(dac_cs==1'b1)) // parallel load data to shift reg shift_reg <= {cmd,data_in,2'b00}; else // .. else start shifting shift_reg <= {shift_reg[14:0],1'b0}; // Assign outputs to drive SPI interface to DAC assign dac_sck = !clk_1MHz&!dac_cs; assign dac_sdi = shift_reg[15]; endmodule