aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorVasil Zlatanov <v@skozl.com>2019-03-07 15:00:40 +0000
committerVasil Zlatanov <v@skozl.com>2019-03-07 15:00:40 +0000
commit23fa20a9a8e8dc34410c400545ef182b0552e72a (patch)
tree769d6f9628c7ab15c8bfe38211d07b150e61e372
parentc9958b93e9d2e2ea9b7e7556a02736835f905df4 (diff)
downloade4-gan-23fa20a9a8e8dc34410c400545ef182b0552e72a.tar.gz
e4-gan-23fa20a9a8e8dc34410c400545ef182b0552e72a.tar.bz2
e4-gan-23fa20a9a8e8dc34410c400545ef182b0552e72a.zip
Rewrite cdcgan
-rwxr-xr-xcdcgan.py171
1 files changed, 93 insertions, 78 deletions
diff --git a/cdcgan.py b/cdcgan.py
index aba3669..8a4b168 100755
--- a/cdcgan.py
+++ b/cdcgan.py
@@ -1,45 +1,46 @@
from __future__ import print_function, division
-import tensorflow.keras as keras
+import tensorflow as keras
+
import tensorflow as tf
-from keras.datasets import mnist
-
-import keras.layers as layers
-from keras.layers import Input, Dense, Reshape, Flatten, Dropout, multiply
-from keras.layers import BatchNormalization, Activation, Embedding, ZeroPadding2D
-from keras.layers.advanced_activations import LeakyReLU
-from keras.layers.convolutional import UpSampling2D, Conv2D
-from keras.models import Sequential, Model
-from keras.optimizers import Adam
+from tensorflow.keras.datasets import mnist
+from tensorflow.keras.layers import Input, Dense, Reshape, Flatten, Dropout, multiply
+from tensorflow.keras.layers import BatchNormalization, Embedding, Activation, ZeroPadding2D
+from tensorflow.keras.layers import LeakyReLU
+from tensorflow.keras.layers import UpSampling2D, Conv2D
+from tensorflow.keras.models import Sequential, Model
+from tensorflow.keras.optimizers import Adam
+
import matplotlib.pyplot as plt
-from IPython.display import clear_output
+import matplotlib.gridspec as gridspec
+
from tqdm import tqdm
+import sys
+
import numpy as np
class CDCGAN():
- def __init__(self):
+ def __init__(self, conv_layers = 1, num_classes = 10):
# Input shape
+ self.num_classes = num_classes
self.img_rows = 28
self.img_cols = 28
self.channels = 1
self.img_shape = (self.img_rows, self.img_cols, self.channels)
- self.num_classes = 10
self.latent_dim = 100
+ self.conv_layers = conv_layers
- optimizer = Adam(0.0002, 0.5)
+ optimizer = Adam(0.002, 0.5)
# Build and compile the discriminator
self.discriminator = self.build_discriminator()
-
- self.discriminator.compile(loss=['binary_crossentropy'],
+ self.discriminator.compile(loss='binary_crossentropy',
optimizer=optimizer,
metrics=['accuracy'])
# Build the generator
self.generator = self.build_generator()
- # The generator takes noise and the target label as input
- # and generates the corresponding digit of that label
noise = Input(shape=(self.latent_dim,))
label = Input(shape=(1,))
img = self.generator([noise, label])
@@ -47,10 +48,10 @@ class CDCGAN():
# For the combined model we will only train the generator
self.discriminator.trainable = False
- # The discriminator takes generated image as input and determines validity
- # and the label of that image
+ # The discriminator takes generated images as input and determines validity
valid = self.discriminator([img, label])
+
# The combined model (stacked generator and discriminator)
# Trains generator to fool discriminator
self.combined = Model([noise, label], valid)
@@ -58,61 +59,78 @@ class CDCGAN():
optimizer=optimizer)
def build_generator(self):
- # Prepare noise input
- input_z = layers.Input((100,))
- dense_z_1 = layers.Dense(1024)(input_z)
- act_z_1 = layers.Activation("tanh")(dense_z_1)
- dense_z_2 = layers.Dense(128 * 7 * 7)(act_z_1)
- bn_z_1 = layers.BatchNormalization()(dense_z_2)
- reshape_z = layers.Reshape((7, 7, 128), input_shape=(128 * 7 * 7,))(bn_z_1)
-
- # Prepare Conditional (label) input
- input_c = layers.Input((1,))
- dense_c_1 = layers.Dense(1024)(input_c)
- act_c_1 = layers.Activation("tanh")(dense_c_1)
- dense_c_2 = layers.Dense(128 * 7 * 7)(act_c_1)
- bn_c_1 = layers.BatchNormalization()(dense_c_2)
- reshape_c = layers.Reshape((7, 7, 128), input_shape=(128 * 7 * 7,))(bn_c_1)
-
- # Combine input source
- concat_z_c = layers.Concatenate()([reshape_z, reshape_c])
-
- # Image generation with the concatenated inputs
- up_1 = layers.UpSampling2D(size=(2, 2))(concat_z_c)
- conv_1 = layers.Conv2D(64, (5, 5), padding='same')(up_1)
- act_1 = layers.Activation("tanh")(conv_1)
- up_2 = layers.UpSampling2D(size=(2, 2))(act_1)
- conv_2 = layers.Conv2D(1, (5, 5), padding='same')(up_2)
- act_2 = layers.Activation("tanh")(conv_2)
- model = Model(inputs=[input_z, input_c], outputs=act_2)
- return model
+ model = Sequential()
+
+ model.add(Dense(128 * 7 * 7, activation="relu", input_dim=self.latent_dim))
+ model.add(Reshape((7, 7, 128)))
+ model.add(UpSampling2D())
+
+ for i in range(self.conv_layers):
+ model.add(Conv2D(128, kernel_size=3, padding="same"))
+ model.add(BatchNormalization())
+ model.add(Activation("relu"))
+
+ model.add(UpSampling2D())
+
+ for i in range(self.conv_layers):
+ model.add(Conv2D(64, kernel_size=3, padding="same"))
+ model.add(BatchNormalization())
+
+ model.add(Activation("relu"))
+
+ model.add(Conv2D(self.channels, kernel_size=3, padding="same"))
+ model.add(Activation("tanh"))
+
+ #model.summary()
+
+ noise = Input(shape=(self.latent_dim,))
+ label = Input(shape=(1,), dtype='int32')
+ label_embedding = Flatten()(Embedding(self.num_classes, self.latent_dim)(label))
+ model_input = multiply([noise, label_embedding])
+ img = model(model_input)
+
+ return Model([noise, label], img)
def build_discriminator(self):
- input_gen_image = layers.Input((28, 28, 1))
- conv_1_image = layers.Conv2D(64, (5, 5), padding='same')(input_gen_image)
- act_1_image = layers.Activation("tanh")(conv_1_image)
- pool_1_image = layers.MaxPooling2D(pool_size=(2, 2))(act_1_image)
- conv_2_image = layers.Conv2D(128, (5, 5))(pool_1_image)
- act_2_image = layers.Activation("tanh")(conv_2_image)
- pool_2_image = layers.MaxPooling2D(pool_size=(2, 2))(act_2_image)
-
- input_c = layers.Input((1,))
- dense_1_c = layers.Dense(1024)(input_c)
- act_1_c = layers.Activation("tanh")(dense_1_c)
- dense_2_c = layers.Dense(5 * 5 * 128)(act_1_c)
- bn_c = layers.BatchNormalization()(dense_2_c)
- reshaped_c = layers.Reshape((5, 5, 128))(bn_c)
-
- concat = layers.Concatenate()([pool_2_image, reshaped_c])
-
- flat = layers.Flatten()(concat)
- dense_1 = layers.Dense(1024)(flat)
- act_1 = layers.Activation("tanh")(dense_1)
- dense_2 = layers.Dense(1)(act_1)
- act_2 = layers.Activation('sigmoid')(dense_2)
- model = Model(inputs=[input_gen_image, input_c], outputs=act_2)
- return model
+
+ model = Sequential()
+
+ model.add(Dense(28 * 28 * 3, activation="relu"))
+ model.add(Reshape((28, 28, 3)))
+ model.add(Conv2D(32, kernel_size=3, strides=2, padding="same"))
+ model.add(LeakyReLU(alpha=0.2))
+ model.add(Dropout(0.25))
+ model.add(Conv2D(64, kernel_size=3, strides=2, padding="same"))
+ model.add(ZeroPadding2D(padding=((0,1),(0,1))))
+ model.add(BatchNormalization())
+ model.add(LeakyReLU(alpha=0.2))
+ model.add(Dropout(0.25))
+ model.add(Conv2D(128, kernel_size=3, strides=2, padding="same"))
+ model.add(BatchNormalization())
+ model.add(LeakyReLU(alpha=0.2))
+ model.add(Dropout(0.25))
+ model.add(Conv2D(256, kernel_size=3, strides=1, padding="same"))
+ model.add(BatchNormalization())
+ model.add(LeakyReLU(alpha=0.2))
+ model.add(Dropout(0.25))
+ model.add(Flatten())
+ model.add(Dense(1, activation='sigmoid'))
+
+ #model.summary()
+
+ img = Input(shape=self.img_shape)
+
+ label = Input(shape=(1,), dtype='int32')
+
+ label_embedding = Flatten()(Embedding(self.num_classes, np.prod(self.img_shape))(label))
+ flat_img = Flatten()(img)
+
+ model_input = multiply([flat_img, label_embedding])
+
+ validity = model(model_input)
+
+ return Model([img, label], validity)
def train(self, epochs, batch_size=128, sample_interval=50, graph=False, smooth_real=1, smooth_fake=0):
@@ -143,6 +161,7 @@ class CDCGAN():
# Sample noise as generator input
noise = np.random.normal(0, 1, (batch_size, 100))
+ tf.keras.backend.get_session().run(tf.global_variables_initializer())
# Generate a half batch of new images
gen_imgs = self.generator.predict([noise, labels])
@@ -224,10 +243,6 @@ class CDCGAN():
return train_data, test_data, val_data, labels_train, labels_test, labels_val
-'''
if __name__ == '__main__':
- cgan = CDCGAN()
- cgan.train(epochs=70, batch_size=32, sample_interval=200)
- train, test, tr_labels, te_labels = cgan.generate_data()
- print(train.shape, test.shape)
-'''
+ cdcgan = CDCGAN()
+ cdcgan.train(epochs=4000, batch_size=32)