diff options
| author | nunzip <np.scarh@gmail.com> | 2019-03-06 13:13:25 +0000 | 
|---|---|---|
| committer | nunzip <np.scarh@gmail.com> | 2019-03-06 13:13:25 +0000 | 
| commit | f2d09edb7fb511364347ae9df1915a6655f45a0a (patch) | |
| tree | 6b719c2bdbe0047d7be4f746b23a2d8640a447b9 | |
| parent | 566e8c4c6fb643b3450365384331e9b4df863fdc (diff) | |
| download | e4-gan-f2d09edb7fb511364347ae9df1915a6655f45a0a.tar.gz e4-gan-f2d09edb7fb511364347ae9df1915a6655f45a0a.tar.bz2 e4-gan-f2d09edb7fb511364347ae9df1915a6655f45a0a.zip | |
Insert option to keep training the network with different splits
| -rw-r--r-- | lenet.py | 6 | 
1 files changed, 5 insertions, 1 deletions
| @@ -101,7 +101,7 @@ def plot_history(history, metric = None):      plt.ylabel('Loss')      plt.xlabel('Epoch') -def train_classifier(x_train, y_train, x_val, y_val, batch_size=128, epochs=100, metrics=[categorical_accuracy], optimizer = None): +def train_classifier(x_train, y_train, x_val, y_val, batch_size=128, epochs=100, metrics=[categorical_accuracy], optimizer = None, keep_training = False):    shape = (32, 32, 1)    # Pad data to 32x32 (MNIST is 28x28) @@ -114,8 +114,12 @@ def train_classifier(x_train, y_train, x_val, y_val, batch_size=128, epochs=100,        optimizer = optimizers.SGD(lr=0.001, decay=1e-6, momentum=0.9, nesterov=True)    model.compile(loss='categorical_crossentropy', metrics=metrics, optimizer=optimizer) + +  if keep_training: +      model.load_weights('./model_gan.h5', by_name=False)    history = model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data = (x_val, y_val)) +  model.save_weights('./model_gan.h5')    plot_history(history, 'categorical_accuracy')    plot_history(history)    return model  | 
