aboutsummaryrefslogtreecommitdiff
path: root/cgan.py
diff options
context:
space:
mode:
authornunzip <np.scarh@gmail.com>2019-03-04 21:06:27 +0000
committernunzip <np.scarh@gmail.com>2019-03-04 21:06:27 +0000
commitf00bc97bcb820d30d73fed37eb5c0d5ffddcd9ca (patch)
tree6077e8db811da655e9e94f719b9d25f7a26a4aa8 /cgan.py
parent02ad81aa8b05c86bf02f1dfb883770af6aa51e61 (diff)
downloade4-gan-f00bc97bcb820d30d73fed37eb5c0d5ffddcd9ca.tar.gz
e4-gan-f00bc97bcb820d30d73fed37eb5c0d5ffddcd9ca.tar.bz2
e4-gan-f00bc97bcb820d30d73fed37eb5c0d5ffddcd9ca.zip
Add One-sided smoothing
Diffstat (limited to 'cgan.py')
-rwxr-xr-xcgan.py7
1 files changed, 5 insertions, 2 deletions
diff --git a/cgan.py b/cgan.py
index 5ab0c10..880a8b8 100755
--- a/cgan.py
+++ b/cgan.py
@@ -107,7 +107,7 @@ class CGAN():
return Model([img, label], validity)
- def train(self, epochs, batch_size=128, sample_interval=50, graph=False):
+ def train(self, epochs, batch_size=128, sample_interval=50, graph=False, smooth=False):
# Load the dataset
(X_train, y_train), (_, _) = mnist.load_data()
@@ -140,7 +140,10 @@ class CGAN():
gen_imgs = self.generator.predict([noise, labels])
# Train the discriminator
- d_loss_real = self.discriminator.train_on_batch([imgs, labels], valid)
+ if smooth == True:
+ d_loss_real = self.discriminator.train_on_batch([imgs, labels], valid*0.9)
+ else:
+ d_loss_real = self.discriminator.train_on_batch([imgs, labels], valid)
d_loss_fake = self.discriminator.train_on_batch([gen_imgs, labels], fake)
d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)