diff options
| author | nunzip <np.scarh@gmail.com> | 2019-03-06 23:58:13 +0000 | 
|---|---|---|
| committer | nunzip <np.scarh@gmail.com> | 2019-03-06 23:58:13 +0000 | 
| commit | 06b3e7c9fdae1f86e33f331b5f69cf326afb38e1 (patch) | |
| tree | 1395fa8a74abaab88d3bf5f698469174b058b88f /lenet.py | |
| parent | 1258e79ceee17b55ee87d5ac3a10ffea76a42dc5 (diff) | |
| parent | 5d779afb5a9511323e3402537af172d68930d85c (diff) | |
| download | e4-gan-06b3e7c9fdae1f86e33f331b5f69cf326afb38e1.tar.gz e4-gan-06b3e7c9fdae1f86e33f331b5f69cf326afb38e1.tar.bz2 e4-gan-06b3e7c9fdae1f86e33f331b5f69cf326afb38e1.zip  | |
Merge branch 'master' of skozl.com:e4-gan
Diffstat (limited to 'lenet.py')
| -rw-r--r-- | lenet.py | 11 | 
1 files changed, 8 insertions, 3 deletions
@@ -13,6 +13,8 @@ import random  from sklearn.metrics import accuracy_score  from sklearn.model_selection import train_test_split +from classifier_metrics_impl import classifier_score_from_logits +  def import_mnist():    from tensorflow.examples.tutorials.mnist import input_data    mnist = input_data.read_data_sets("MNIST_data/", reshape=False) @@ -62,7 +64,8 @@ def get_lenet(shape):    model.add(Dense(units=120, activation='relu'))    model.add(Dense(units=84, activation='relu')) -  model.add(Dense(units=10, activation = 'softmax')) +  #model.add(Dense(units=10, activation = 'softmax')) +  model.add(Dense(units=10, activation = 'relu'))    return model  def plot_history(history, metric = None): @@ -126,10 +129,12 @@ def train_classifier(x_train, y_train, x_val, y_val, batch_size=128, epochs=100,  def test_classifier(model, x_test, y_true):    x_test = np.pad(x_test, ((0,0),(2,2),(2,2),(0,0)), 'constant')    y_pred = model.predict(x_test) +  logits = tf.convert_to_tensor(y_pred, dtype=tf.float32) +  inception_score = tf.keras.backend.eval(classifier_score_from_logits(logits))    y_pred = np.argmax(y_pred, axis=1)    y_true = np.argmax(y_true, axis=1)    plot_example_errors(y_pred, y_true, x_test) -  return accuracy_score(y_true, y_pred) +  return accuracy_score(y_true, y_pred), inception_score  def mix_data(X_train, y_train, X_validation, y_validation, train_gen, tr_labels_gen, val_gen, val_labels_gen, split=0): @@ -162,4 +167,4 @@ if __name__ == '__main__':    x_train, y_train, x_val, y_val, x_t, y_t = import_mnist()    print(y_t.shape)    model = train_classifier(x_train[:100], y_train[:100], x_val, y_val, epochs=3) -  test_classifier(model, x_t, y_t) +  print(test_classifier(model, x_t, y_t))  | 
