diff options
author | Vasil Zlatanov <vasil@netcraft.com> | 2019-03-07 00:17:41 +0000 |
---|---|---|
committer | Vasil Zlatanov <vasil@netcraft.com> | 2019-03-07 00:17:46 +0000 |
commit | b878862fbf449178fe314d31c03c615433c17f5d (patch) | |
tree | 58f32a0b46953475335eb81169c445e080f081f6 /lenet.py | |
parent | 06b3e7c9fdae1f86e33f331b5f69cf326afb38e1 (diff) | |
download | e4-gan-b878862fbf449178fe314d31c03c615433c17f5d.tar.gz e4-gan-b878862fbf449178fe314d31c03c615433c17f5d.tar.bz2 e4-gan-b878862fbf449178fe314d31c03c615433c17f5d.zip |
Add get_lenet_icp
Diffstat (limited to 'lenet.py')
-rw-r--r-- | lenet.py | 16 |
1 files changed, 15 insertions, 1 deletions
@@ -57,7 +57,7 @@ def get_lenet(shape): model = keras.Sequential() model.add(Conv2D(filters=6, kernel_size=(3, 3), activation='relu', input_shape=shape)) model.add(AveragePooling2D()) - + model.add(Conv2D(filters=16, kernel_size=(3, 3), activation='relu')) model.add(AveragePooling2D()) model.add(Flatten()) @@ -68,6 +68,20 @@ def get_lenet(shape): model.add(Dense(units=10, activation = 'relu')) return model +def get_lenet_icp(shape): + model = keras.Sequential() + model.add(Conv2D(filters=6, kernel_size=(3, 3), activation='relu', input_shape=(32,32,1))) + model.add(AveragePooling2D()) + + model.add(Conv2D(filters=16, kernel_size=(3, 3), activation='relu')) + model.add(AveragePooling2D()) + model.add(Flatten()) + + model.add(Dense(units=120, activation='relu')) + model.add(Dense(units=84, activation='relu')) + model.add(Dense(units=10, activation = 'relu')) + return model + def plot_history(history, metric = None): # Plots the loss history of training and validation (if existing) # and a given metric |