diff options
| -rw-r--r-- | lenet.py | 8 | 
1 files changed, 5 insertions, 3 deletions
| @@ -106,12 +106,14 @@ def plot_history(history, metric = None):      plt.ylabel('Loss')      plt.xlabel('Epoch') -def train_classifier(x_train, y_train, x_val, y_val, batch_size=128, epochs=100): +def train_classifier(x_train, y_train, x_val, y_val, batch_size=128, epochs=100, metrics=['categorical_accuracy'], optimizer = None):    shape = (32, 32, 1)    model = get_lenet(shape) -  sgd = optimizers.SGD(lr=0.001, decay=1e-6, momentum=0.9, nesterov=True) -  model.compile(loss='categorical_crossentropy', optimizer=sgd) +  if optimizer = None: +      optimizer = optimizers.SGD(lr=0.001, decay=1e-6, momentum=0.9, nesterov=True) + +  model.compile(loss='categorical_crossentropy', metrics=metrics, optimizer=optimizer)    history = model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data = (x_val, y_val))    plot_history(history) | 
