diff options
| -rwxr-xr-x | cdcgan.py | 233 | 
1 files changed, 233 insertions, 0 deletions
| diff --git a/cdcgan.py b/cdcgan.py new file mode 100755 index 0000000..aba3669 --- /dev/null +++ b/cdcgan.py @@ -0,0 +1,233 @@ +from __future__ import print_function, division +import tensorflow.keras as keras +import tensorflow as tf +from keras.datasets import mnist + +import keras.layers as layers +from keras.layers import Input, Dense, Reshape, Flatten, Dropout, multiply +from keras.layers import BatchNormalization, Activation, Embedding, ZeroPadding2D +from keras.layers.advanced_activations import LeakyReLU +from keras.layers.convolutional import UpSampling2D, Conv2D +from keras.models import Sequential, Model +from keras.optimizers import Adam +import matplotlib.pyplot as plt +from IPython.display import clear_output +from tqdm import tqdm + +import numpy as np + +class CDCGAN(): +    def __init__(self): +        # Input shape +        self.img_rows = 28 +        self.img_cols = 28 +        self.channels = 1 +        self.img_shape = (self.img_rows, self.img_cols, self.channels) +        self.num_classes = 10 +        self.latent_dim = 100 + +        optimizer = Adam(0.0002, 0.5) + +        # Build and compile the discriminator +        self.discriminator = self.build_discriminator() + +        self.discriminator.compile(loss=['binary_crossentropy'], +            optimizer=optimizer, +            metrics=['accuracy']) + +        # Build the generator +        self.generator = self.build_generator() + +        # The generator takes noise and the target label as input +        # and generates the corresponding digit of that label +        noise = Input(shape=(self.latent_dim,)) +        label = Input(shape=(1,)) +        img = self.generator([noise, label]) + +        # For the combined model we will only train the generator +        self.discriminator.trainable = False + +        # The discriminator takes generated image as input and determines validity +        # and the label of that image +        valid = self.discriminator([img, label]) + +        # The combined model  (stacked generator and discriminator) +        # Trains generator to fool discriminator +        self.combined = Model([noise, label], valid) +        self.combined.compile(loss=['binary_crossentropy'], +            optimizer=optimizer) + +    def build_generator(self): +        # Prepare noise input +        input_z = layers.Input((100,)) +        dense_z_1 = layers.Dense(1024)(input_z) +        act_z_1 = layers.Activation("tanh")(dense_z_1) +        dense_z_2 = layers.Dense(128 * 7 * 7)(act_z_1) +        bn_z_1 = layers.BatchNormalization()(dense_z_2) +        reshape_z = layers.Reshape((7, 7, 128), input_shape=(128 * 7 * 7,))(bn_z_1) + +        # Prepare Conditional (label) input +        input_c = layers.Input((1,)) +        dense_c_1 = layers.Dense(1024)(input_c) +        act_c_1 = layers.Activation("tanh")(dense_c_1) +        dense_c_2 = layers.Dense(128 * 7 * 7)(act_c_1) +        bn_c_1 = layers.BatchNormalization()(dense_c_2) +        reshape_c = layers.Reshape((7, 7, 128), input_shape=(128 * 7 * 7,))(bn_c_1) + +        # Combine input source +        concat_z_c = layers.Concatenate()([reshape_z, reshape_c]) + +        # Image generation with the concatenated inputs +        up_1 = layers.UpSampling2D(size=(2, 2))(concat_z_c) +        conv_1 = layers.Conv2D(64, (5, 5), padding='same')(up_1) +        act_1 = layers.Activation("tanh")(conv_1) +        up_2 = layers.UpSampling2D(size=(2, 2))(act_1) +        conv_2 = layers.Conv2D(1, (5, 5), padding='same')(up_2) +        act_2 = layers.Activation("tanh")(conv_2) +        model = Model(inputs=[input_z, input_c], outputs=act_2) +        return model + + +    def build_discriminator(self): +        input_gen_image = layers.Input((28, 28, 1)) +        conv_1_image = layers.Conv2D(64, (5, 5), padding='same')(input_gen_image) +        act_1_image = layers.Activation("tanh")(conv_1_image) +        pool_1_image = layers.MaxPooling2D(pool_size=(2, 2))(act_1_image) +        conv_2_image = layers.Conv2D(128, (5, 5))(pool_1_image) +        act_2_image = layers.Activation("tanh")(conv_2_image) +        pool_2_image = layers.MaxPooling2D(pool_size=(2, 2))(act_2_image) + +        input_c = layers.Input((1,)) +        dense_1_c = layers.Dense(1024)(input_c) +        act_1_c = layers.Activation("tanh")(dense_1_c) +        dense_2_c = layers.Dense(5 * 5 * 128)(act_1_c) +        bn_c = layers.BatchNormalization()(dense_2_c) +        reshaped_c = layers.Reshape((5, 5, 128))(bn_c) + +        concat = layers.Concatenate()([pool_2_image, reshaped_c]) + +        flat = layers.Flatten()(concat) +        dense_1 = layers.Dense(1024)(flat) +        act_1 = layers.Activation("tanh")(dense_1) +        dense_2 = layers.Dense(1)(act_1) +        act_2 = layers.Activation('sigmoid')(dense_2) +        model = Model(inputs=[input_gen_image, input_c], outputs=act_2) +        return model + +    def train(self, epochs, batch_size=128, sample_interval=50, graph=False, smooth_real=1, smooth_fake=0): + +        # Load the dataset +        (X_train, y_train), (_, _) = mnist.load_data() + +        # Configure input +        X_train = (X_train.astype(np.float32) - 127.5) / 127.5 +        X_train = np.expand_dims(X_train, axis=3) +        y_train = y_train.reshape(-1, 1) + +        # Adversarial ground truths +        valid = np.ones((batch_size, 1)) +        fake = np.zeros((batch_size, 1)) +         +        xaxis = np.arange(epochs) +        loss = np.zeros((2,epochs)) +        for epoch in tqdm(range(epochs)): + +            # --------------------- +            #  Train Discriminator +            # --------------------- + +            # Select a random half batch of images +            idx = np.random.randint(0, X_train.shape[0], batch_size) +            imgs, labels = X_train[idx], y_train[idx] + +            # Sample noise as generator input +            noise = np.random.normal(0, 1, (batch_size, 100)) + +            # Generate a half batch of new images +            gen_imgs = self.generator.predict([noise, labels]) + +            # Train the discriminator +            d_loss_real = self.discriminator.train_on_batch([imgs, labels], valid*smooth_real) +            d_loss_fake = self.discriminator.train_on_batch([gen_imgs, labels], valid*smooth_fake) +            d_loss = 0.5 * np.add(d_loss_real, d_loss_fake) + +            # --------------------- +            #  Train Generator +            # --------------------- + +            # Condition on labels +            sampled_labels = np.random.randint(0, 10, batch_size).reshape(-1, 1) +            # Train the generator +            g_loss = self.combined.train_on_batch([noise, sampled_labels], valid) + +            # Plot the progress +            #print ("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100*d_loss[1], g_loss)) +            loss[0][epoch] = d_loss[0] +            loss[1][epoch] = g_loss + +            # If at save interval => save generated image samples +            if epoch % sample_interval == 0: +                self.sample_images(epoch) +             +        if graph: +          plt.plot(xaxis,loss[0]) +          plt.plot(xaxis,loss[1]) +          plt.legend(('Discriminator', 'Generator'), loc='best') +          plt.xlabel('Epoch') +          plt.ylabel('Binary Crossentropy Loss') + +    def sample_images(self, epoch): +        r, c = 2, 5 +        noise = np.random.normal(0, 1, (r * c, 100)) +        sampled_labels = np.arange(0, 10).reshape(-1, 1) + +        #using dummy_labels would just print zeros to help identify image quality +        #dummy_labels = np.zeros(32).reshape(-1, 1) +         +        gen_imgs = self.generator.predict([noise, sampled_labels]) + +        # Rescale images 0 - 1 +        gen_imgs = 0.5 * gen_imgs + 0.5 + +        fig, axs = plt.subplots(r, c) +        cnt = 0 +        for i in range(r): +            for j in range(c): +                axs[i,j].imshow(gen_imgs[cnt,:,:,0], cmap='gray') +                axs[i,j].set_title("Digit: %d" % sampled_labels[cnt]) +                axs[i,j].axis('off') +                cnt += 1 +        fig.savefig("images/%d.png" % epoch) +        plt.close() +         +    def generate_data(self): +      noise_train = np.random.normal(0, 1, (55000, 100)) +      noise_test = np.random.normal(0, 1, (10000, 100)) +      noise_val = np.random.normal(0, 1, (5000, 100)) + +      labels_train = np.zeros(55000).reshape(-1, 1) +      labels_test = np.zeros(10000).reshape(-1, 1) +      labels_val = np.zeros(5000).reshape(-1, 1) + +      for i in range(10): +        labels_train[i*5500:] = i +        labels_test[i*1000:] = i +        labels_val[i*500:] = i + +      train_data = self.generator.predict([noise_train, labels_train]) +      test_data = self.generator.predict([noise_test, labels_test]) +      val_data = self.generator.predict([noise_val, labels_val]) + +      labels_train = keras.utils.to_categorical(labels_train, 10) +      labels_test = keras.utils.to_categorical(labels_test, 10) +      labels_val = keras.utils.to_categorical(labels_val, 10) + +      return train_data, test_data, val_data, labels_train, labels_test, labels_val + +''' +if __name__ == '__main__': +    cgan = CDCGAN() +    cgan.train(epochs=70, batch_size=32, sample_interval=200) +    train, test, tr_labels, te_labels = cgan.generate_data() +    print(train.shape, test.shape) +''' | 
