diff options
| -rw-r--r-- | lenet.py | 4 | 
1 files changed, 2 insertions, 2 deletions
| @@ -118,7 +118,7 @@ def plot_history(history, metric = None):      plt.ylabel('Loss')      plt.xlabel('Epoch') -def train_classifier(x_train, y_train, x_val, y_val, batch_size=128, epochs=100, metrics=[categorical_accuracy], optimizer = None, keep_training = False): +def train_classifier(x_train, y_train, x_val, y_val, batch_size=128, epochs=100, metrics=[categorical_accuracy], optimizer = None, keep_training = False, verbose=1):    shape = (32, 32, 1)    # Pad data to 32x32 (MNIST is 28x28) @@ -133,7 +133,7 @@ def train_classifier(x_train, y_train, x_val, y_val, batch_size=128, epochs=100,    model.compile(loss='categorical_crossentropy', metrics=metrics, optimizer=optimizer)    if keep_training:      model.load_weights('./weights.h5') -  history = model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data = (x_val, y_val)) +  history = model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=verbose, validation_data = (x_val, y_val))    model.save_weights('./model_gan.h5')    plot_history(history, 'categorical_accuracy')    plot_history(history) | 
