diff options
| -rwxr-xr-x | cgan.py | 7 | ||||
| -rw-r--r-- | dcgan.py | 11 | 
2 files changed, 10 insertions, 8 deletions
| @@ -15,7 +15,7 @@ from tqdm import tqdm  import numpy as np  class CGAN(): -    def __init__(self, dense_layers = 3): +    def __init__(self, dense_layers = 3, dropout=0.4):          # Input shape          self.img_rows = 28          self.img_cols = 28 @@ -24,6 +24,7 @@ class CGAN():          self.num_classes = 10          self.latent_dim = 100          self.dense_layers = dense_layers +        self.dropout = dropout          optimizer = Adam(0.0002, 0.5) @@ -87,10 +88,10 @@ class CGAN():          model.add(LeakyReLU(alpha=0.2))          model.add(Dense(512))          model.add(LeakyReLU(alpha=0.2)) -        model.add(Dropout(0.4)) +        model.add(Dropout(self.dropout))          model.add(Dense(512))          model.add(LeakyReLU(alpha=0.2)) -        model.add(Dropout(0.4)) +        model.add(Dropout(self.dropout))          model.add(Dense(1, activation='sigmoid'))          #model.summary() @@ -17,7 +17,7 @@ import sys  import numpy as np  class DCGAN(): -    def __init__(self, conv_layers = 1): +    def __init__(self, conv_layers = 1, dropout = 0.25):          # Input shape          self.img_rows = 28          self.img_cols = 28 @@ -25,6 +25,7 @@ class DCGAN():          self.img_shape = (self.img_rows, self.img_cols, self.channels)          self.latent_dim = 100          self.conv_layers = conv_layers +        self.dropout = dropout          optimizer = Adam(0.002, 0.5) @@ -88,20 +89,20 @@ class DCGAN():          model.add(Conv2D(32, kernel_size=3, strides=2, input_shape=self.img_shape, padding="same"))          model.add(LeakyReLU(alpha=0.2)) -        model.add(Dropout(0.25)) +        model.add(Dropout(self.dropout))          model.add(Conv2D(64, kernel_size=3, strides=2, padding="same"))          model.add(ZeroPadding2D(padding=((0,1),(0,1))))          model.add(BatchNormalization())          model.add(LeakyReLU(alpha=0.2)) -        model.add(Dropout(0.25)) +        model.add(Dropout(self.dropout))          model.add(Conv2D(128, kernel_size=3, strides=2, padding="same"))          model.add(BatchNormalization())          model.add(LeakyReLU(alpha=0.2)) -        model.add(Dropout(0.25)) +        model.add(Dropout(self.dropout))          model.add(Conv2D(256, kernel_size=3, strides=1, padding="same"))          model.add(BatchNormalization())          model.add(LeakyReLU(alpha=0.2)) -        model.add(Dropout(0.25)) +        model.add(Dropout(self.dropout))          model.add(Flatten())          model.add(Dense(1, activation='sigmoid')) | 
