From dc5c65eed1f3ca96324d2e057cd7d815cd4a2df5 Mon Sep 17 00:00:00 2001 From: nunzip Date: Wed, 6 Mar 2019 13:56:06 +0000 Subject: Update on old commit for training the classifier in steps --- lenet.py | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) (limited to 'lenet.py') diff --git a/lenet.py b/lenet.py index c1c27b5..cae1afa 100644 --- a/lenet.py +++ b/lenet.py @@ -101,7 +101,7 @@ def plot_history(history, metric = None): plt.ylabel('Loss') plt.xlabel('Epoch') -def train_classifier(x_train, y_train, x_val, y_val, batch_size=128, epochs=100, metrics=[categorical_accuracy], optimizer = None): +def train_classifier(x_train, y_train, x_val, y_val, batch_size=128, epochs=100, metrics=[categorical_accuracy], optimizer = None, keep_training = False): shape = (32, 32, 1) # Pad data to 32x32 (MNIST is 28x28) @@ -114,10 +114,12 @@ def train_classifier(x_train, y_train, x_val, y_val, batch_size=128, epochs=100, optimizer = optimizers.SGD(lr=0.001, decay=1e-6, momentum=0.9, nesterov=True) model.compile(loss='categorical_crossentropy', metrics=metrics, optimizer=optimizer) - + if keep_training: + model.load_weights('./weights.h5') history = model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data = (x_val, y_val)) plot_history(history, 'categorical_accuracy') plot_history(history) + model.save_weights('./weights.h5') return model def test_classifier(model, x_test, y_true): -- cgit v1.2.3-54-g00ecf