From 80d5df3b64c65f0bb582404ca18a6db0fff4d408 Mon Sep 17 00:00:00 2001 From: nunzip Date: Thu, 14 Mar 2019 19:33:09 +0000 Subject: Add mode collapse and fix architecture report --- report/fig/cdc_collapse.png | Bin 0 -> 16386 bytes report/fig/cdcdesc.pdf | Bin 0 -> 284475 bytes report/fig/cdcgen.pdf | Bin 0 -> 109586 bytes report/fig/cdcloss3.png | Bin 0 -> 16346 bytes report/fig/clustcollapse.png | Bin 0 -> 19917 bytes report/paper.md | 151 ++++--------------------------------------- 6 files changed, 12 insertions(+), 139 deletions(-) create mode 100644 report/fig/cdc_collapse.png create mode 100644 report/fig/cdcdesc.pdf create mode 100644 report/fig/cdcgen.pdf create mode 100644 report/fig/cdcloss3.png create mode 100644 report/fig/clustcollapse.png (limited to 'report') diff --git a/report/fig/cdc_collapse.png b/report/fig/cdc_collapse.png new file mode 100644 index 0000000..01e5fd6 Binary files /dev/null and b/report/fig/cdc_collapse.png differ diff --git a/report/fig/cdcdesc.pdf b/report/fig/cdcdesc.pdf new file mode 100644 index 0000000..07710e8 Binary files /dev/null and b/report/fig/cdcdesc.pdf differ diff --git a/report/fig/cdcgen.pdf b/report/fig/cdcgen.pdf new file mode 100644 index 0000000..a25d0f5 Binary files /dev/null and b/report/fig/cdcgen.pdf differ diff --git a/report/fig/cdcloss3.png b/report/fig/cdcloss3.png new file mode 100644 index 0000000..4b3c726 Binary files /dev/null and b/report/fig/cdcloss3.png differ diff --git a/report/fig/clustcollapse.png b/report/fig/clustcollapse.png new file mode 100644 index 0000000..a1293c8 Binary files /dev/null and b/report/fig/clustcollapse.png differ diff --git a/report/paper.md b/report/paper.md index 2177177..d89a394 100644 --- a/report/paper.md +++ b/report/paper.md @@ -85,15 +85,15 @@ but no mode collapse was observed even with the shallow model. ## CGAN Architecture description -CGAN is a conditional version of a GAN which utilises labeled data. Unlike DCGAN, CGAN is trained with explicitly provided labels which allow CGAN to associate features with specific labels. This has the intrinsic advantage of allowing us to specify the label of generated data. The baseline CGAN which we evaluate is visible in figure \ref{fig:cganarc}. The baseline CGAN architecture presents a series blocks each contained a dense layer, LeakyReLu layer (slope=0.2) and a Batch Normalisation layer. The baseline discriminator uses Dense layers, followed by LeakyReLu (slope=0.2) and a Droupout layer. +CGAN is a conditional version of a GAN which utilises labeled data. Unlike DCGAN, CGAN is trained with explicitly provided labels which allow CGAN to associate features with specific labels. This has the intrinsic advantage of allowing us to specify the label of generated data. The baseline CGAN which we evaluate is visible in figure \ref{fig:cganarc}. The baseline CGAN architecture presents a series blocks each contained a dense layer, `LeakyReLu` layer (slope=0.2) and a Batch Normalisation layer. The baseline discriminator uses Dense layers, followed by `LeakyReLu` (slope=0.2) and a Droupout layer. The optimizer used for training is `Adam`(`learning_rate=0.002`, `beta=0.5`). The Convolutional CGAN (CDCGAN) analysed follows the structure presented in the relevant Appendix section. It uses TODO ADD BRIEF DESCRIPTION We evaluate permutations of the architecture involving: -* Shallow CGAN - 1 Dense-LeakyReLu-BN block -* Deep CGAN - 5 Dense-LeakyReLu-BN +* Shallow CGAN - 1 `Dense-LeakyReLu-BN` block +* Deep CGAN - 5 `Dense-LeakyReLu-BN` * Deep Convolutional GAN - DCGAN + conditional label input * One-Sided Label Smoothing (LS) * Various Dropout (DO)- Use 0.1, 0.3 and 0.5 @@ -382,8 +382,6 @@ $$ L_{\textrm{total}} = \alpha L_{\textrm{LeNet}} + \beta L_{\textrm{generator}}
-\newpage - # Appendix ## DCGAN-Appendix @@ -540,145 +538,20 @@ $$ L_{\textrm{total}} = \alpha L_{\textrm{LeNet}} + \beta L_{\textrm{generator}} ## CDCGAN Alternative Architecture -### Generator -``` -__________________________________________________________________________________________________ -Layer (type) Output Shape Param # Connected to -================================================================================================== -input_1 (InputLayer) (None, 100) 0 -__________________________________________________________________________________________________ -dense_2 (Dense) (None, 3136) 316736 input_1[0][0] -__________________________________________________________________________________________________ -reshape_2 (Reshape) (None, 7, 7, 64) 0 dense_2[0][0] -__________________________________________________________________________________________________ -conv2d_transpose_1 (Conv2DTrans (None, 14, 14, 64) 36928 reshape_2[0][0] -__________________________________________________________________________________________________ -batch_normalization_1 (BatchNor (None, 14, 14, 64) 256 conv2d_transpose_1[0][0] -__________________________________________________________________________________________________ -activation_1 (Activation) (None, 14, 14, 64) 0 batch_normalization_1[0][0] -__________________________________________________________________________________________________ -input_2 (InputLayer) (None, 1) 0 -__________________________________________________________________________________________________ -conv2d_transpose_2 (Conv2DTrans (None, 28, 28, 64) 36928 activation_1[0][0] -__________________________________________________________________________________________________ -dense_1 (Dense) (None, 64) 128 input_2[0][0] -__________________________________________________________________________________________________ -batch_normalization_2 (BatchNor (None, 28, 28, 64) 256 conv2d_transpose_2[0][0] -__________________________________________________________________________________________________ -reshape_1 (Reshape) (None, 1, 1, 64) 0 dense_1[0][0] -__________________________________________________________________________________________________ -activation_2 (Activation) (None, 28, 28, 64) 0 batch_normalization_2[0][0] -__________________________________________________________________________________________________ -up_sampling2d_1 (UpSampling2D) (None, 28, 28, 64) 0 reshape_1[0][0] -__________________________________________________________________________________________________ -multiply_1 (Multiply) (None, 28, 28, 64) 0 activation_2[0][0] - up_sampling2d_1[0][0] -__________________________________________________________________________________________________ -conv2d_1 (Conv2D) (None, 28, 28, 64) 36928 multiply_1[0][0] -__________________________________________________________________________________________________ -batch_normalization_3 (BatchNor (None, 28, 28, 64) 256 conv2d_1[0][0] -__________________________________________________________________________________________________ -activation_3 (Activation) (None, 28, 28, 64) 0 batch_normalization_3[0][0] -__________________________________________________________________________________________________ -multiply_2 (Multiply) (None, 28, 28, 64) 0 activation_3[0][0] - up_sampling2d_1[0][0] -__________________________________________________________________________________________________ -conv2d_2 (Conv2D) (None, 28, 28, 64) 36928 multiply_2[0][0] -__________________________________________________________________________________________________ -batch_normalization_4 (BatchNor (None, 28, 28, 64) 256 conv2d_2[0][0] -__________________________________________________________________________________________________ -activation_4 (Activation) (None, 28, 28, 64) 0 batch_normalization_4[0][0] -__________________________________________________________________________________________________ -multiply_3 (Multiply) (None, 28, 28, 64) 0 activation_4[0][0] - up_sampling2d_1[0][0] -__________________________________________________________________________________________________ -conv2d_3 (Conv2D) (None, 28, 28, 1) 577 multiply_3[0][0] -__________________________________________________________________________________________________ -activation_5 (Activation) (None, 28, 28, 1) 0 conv2d_3[0][0] -================================================================================================== -Total params: 466,177 -Trainable params: 465,665 -Non-trainable params: 512 -__________________________________________________________________________________________________ -``` - -### Discriminator - -``` -__________________________________________________________________________________________________ -Layer (type) Output Shape Param # Connected to -================================================================================================== -input_3 (InputLayer) (None, 28, 28, 1) 0 -__________________________________________________________________________________________________ -input_2 (InputLayer) (None, 1) 0 -__________________________________________________________________________________________________ -conv2d_4 (Conv2D) (None, 28, 28, 64) 640 input_3[0][0] -__________________________________________________________________________________________________ -dense_3 (Dense) (None, 64) 128 input_2[0][0] -__________________________________________________________________________________________________ -batch_normalization_5 (BatchNor (None, 28, 28, 64) 256 conv2d_4[0][0] -__________________________________________________________________________________________________ -reshape_3 (Reshape) (None, 1, 1, 64) 0 dense_3[0][0] -__________________________________________________________________________________________________ -leaky_re_lu_1 (LeakyReLU) (None, 28, 28, 64) 0 batch_normalization_5[0][0] -__________________________________________________________________________________________________ -up_sampling2d_2 (UpSampling2D) (None, 28, 28, 64) 0 reshape_3[0][0] -__________________________________________________________________________________________________ -multiply_4 (Multiply) (None, 28, 28, 64) 0 leaky_re_lu_1[0][0] - up_sampling2d_2[0][0] -__________________________________________________________________________________________________ -conv2d_5 (Conv2D) (None, 28, 28, 64) 36928 multiply_4[0][0] -__________________________________________________________________________________________________ -batch_normalization_6 (BatchNor (None, 28, 28, 64) 256 conv2d_5[0][0] -__________________________________________________________________________________________________ -leaky_re_lu_2 (LeakyReLU) (None, 28, 28, 64) 0 batch_normalization_6[0][0] -__________________________________________________________________________________________________ -multiply_5 (Multiply) (None, 28, 28, 64) 0 leaky_re_lu_2[0][0] - up_sampling2d_2[0][0] -__________________________________________________________________________________________________ -conv2d_6 (Conv2D) (None, 28, 28, 64) 36928 multiply_5[0][0] -__________________________________________________________________________________________________ -batch_normalization_7 (BatchNor (None, 28, 28, 64) 256 conv2d_6[0][0] -__________________________________________________________________________________________________ -leaky_re_lu_3 (LeakyReLU) (None, 28, 28, 64) 0 batch_normalization_7[0][0] -__________________________________________________________________________________________________ -multiply_6 (Multiply) (None, 28, 28, 64) 0 leaky_re_lu_3[0][0] - up_sampling2d_2[0][0] -__________________________________________________________________________________________________ -conv2d_7 (Conv2D) (None, 14, 14, 64) 36928 multiply_6[0][0] -__________________________________________________________________________________________________ -batch_normalization_8 (BatchNor (None, 14, 14, 64) 256 conv2d_7[0][0] -__________________________________________________________________________________________________ -leaky_re_lu_4 (LeakyReLU) (None, 14, 14, 64) 0 batch_normalization_8[0][0] -__________________________________________________________________________________________________ -conv2d_8 (Conv2D) (None, 7, 7, 64) 36928 leaky_re_lu_4[0][0] -__________________________________________________________________________________________________ -batch_normalization_9 (BatchNor (None, 7, 7, 64) 256 conv2d_8[0][0] -__________________________________________________________________________________________________ -leaky_re_lu_5 (LeakyReLU) (None, 7, 7, 64) 0 batch_normalization_9[0][0] -__________________________________________________________________________________________________ -flatten_1 (Flatten) (None, 3136) 0 leaky_re_lu_5[0][0] -__________________________________________________________________________________________________ -dropout_1 (Dropout) (None, 3136) 0 flatten_1[0][0] -__________________________________________________________________________________________________ -dense_4 (Dense) (None, 1) 3137 dropout_1[0][0] -================================================================================================== -Total params: 152,897 -Trainable params: 152,257 -Non-trainable params: 640 -__________________________________________________________________________________________________ -``` - -## Retrain-Appendix +\begin{figure}[H] +\begin{center} +\includegraphics[width=24em]{fig/cdcgen.pdf} +\end{center} +\end{figure} -\begin{figure} +\begin{figure}[H] \begin{center} -\includegraphics[width=24em]{fig/train_few_real.png} -\caption{Training with few real samples} -\label{fig:few_real} +\includegraphics[width=24em]{fig/cdcdesc.pdf} \end{center} \end{figure} +## Retrain-Appendix + \begin{figure}[H] \begin{center} \includegraphics[width=24em]{fig/fake_only.png} -- cgit v1.2.3-54-g00ecf