from __future__ import print_function import tensorflow.keras as keras from tensorflow.keras.datasets import mnist from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout, Flatten from tensorflow.keras.layers import Conv2D, MaxPooling2D, AveragePooling2D from tensorflow.keras import backend as K from tensorflow.keras import optimizers batch_size = 128 num_classes = 10 def get_lenet(): model = keras.Sequential() model.add(Conv2D(filters=6, kernel_size=(3, 3), activation='relu', input_shape=(28,28,1))) model.add(AveragePooling2D()) model.add(Conv2D(filters=16, kernel_size=(3, 3), activation='relu')) model.add(AveragePooling2D()) model.add(Flatten()) model.add(Dense(units=120, activation='relu')) model.add(Dense(units=84, activation='relu')) model.add(Dense(units=10, activation = 'softmax')) return model # input image dimensions img_rows, img_cols = 28, 28 # the data, split between train and test sets (x_train, y_train), (x_test, y_test) = mnist.load_data() if K.image_data_format() == 'channels_first': x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols) x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols) input_shape = (1, img_rows, img_cols) else: x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1) x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1) input_shape = (img_rows, img_cols, 1) x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 print('x_train shape:', x_train.shape) print(x_train.shape[0], 'train samples') print(x_test.shape[0], 'test samples') # convert class vectors to binary class matrices y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) model = get_lenet() sgd = optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) model.compile(loss='mean_squared_error', optimizer=sgd) model.fit(x_train, y_train, batch_size=batch_size, epochs=1, verbose=1) y_pred = model.predict(x_test) print(y_pred.shape) print(y_test.shape)