aboutsummaryrefslogtreecommitdiff
path: root/dcgan.py
blob: 21afaac9430ed0e6514646a3a55be96912cde3fc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
from __future__ import print_function, division
import tensorflow as keras

import tensorflow as tf
from tensorflow.keras.datasets import mnist
from tensorflow.keras.layers import Input, Dense, Reshape, Flatten, Dropout
from tensorflow.keras.layers import BatchNormalization, Activation, ZeroPadding2D
from tensorflow.keras.layers import LeakyReLU
from tensorflow.keras.layers import UpSampling2D, Conv2D
from tensorflow.keras.models import Sequential, Model
from tensorflow.keras.optimizers import Adam

from lib.virtual_batch import VirtualBatchNormalization

import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec

from tqdm import tqdm

import sys

import numpy as np

class DCGAN():
    def __init__(self, conv_layers = 1, virtual_batch_normalization=False):
        # Input shape
        self.img_rows = 28
        self.img_cols = 28
        self.channels = 1
        self.img_shape = (self.img_rows, self.img_cols, self.channels)
        self.latent_dim = 100
        self.conv_layers = conv_layers
        self.virtual_batch_normalization = virtual_batch_normalization

        optimizer = Adam(0.002, 0.5)

        # Build and compile the discriminator
        self.discriminator = self.build_discriminator()
        self.discriminator.compile(loss='binary_crossentropy',
            optimizer=optimizer,
            metrics=['accuracy'])

        # Build the generator
        self.generator = self.build_generator()

        # The generator takes noise as input and generates imgs
        z = Input(shape=(self.latent_dim,))
        img = self.generator(z)

        # For the combined model we will only train the generator
        self.discriminator.trainable = False

        # The discriminator takes generated images as input and determines validity
        valid = self.discriminator(img)

        # The combined model  (stacked generator and discriminator)
        # Trains the generator to fool the discriminator
        self.combined = Model(z, valid)
        self.combined.compile(loss='binary_crossentropy', optimizer=optimizer)

    def build_generator(self):

        model = Sequential()

        model.add(Dense(128 * 7 * 7, activation="relu", input_dim=self.latent_dim))
        model.add(Reshape((7, 7, 128)))
        model.add(UpSampling2D())

        for i in range(self.conv_layers):
            model.add(Conv2D(128, kernel_size=3, padding="same"))
            if self.virtual_batch_normalization:
                model.add(VirtualBatchNormalization())
            else:
                model.add(BatchNormalization())
            model.add(Activation("relu"))

        model.add(UpSampling2D())

        for i in range(self.conv_layers):
            model.add(Conv2D(64, kernel_size=3, padding="same"))
            if self.virtual_batch_normalization:
                model.add(VirtualBatchNormalization())
            else:
                model.add(BatchNormalization())

            model.add(Activation("relu"))

        model.add(Conv2D(self.channels, kernel_size=3, padding="same"))
        model.add(Activation("tanh"))

        #model.summary()

        noise = Input(shape=(self.latent_dim,))
        img = model(noise)

        return Model(noise, img)

    def build_discriminator(self):

        model = Sequential()

        model.add(Conv2D(32, kernel_size=3, strides=2, input_shape=self.img_shape, padding="same"))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dropout(0.25))
        model.add(Conv2D(64, kernel_size=3, strides=2, padding="same"))
        model.add(ZeroPadding2D(padding=((0,1),(0,1))))
        model.add(BatchNormalization())
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dropout(0.25))
        model.add(Conv2D(128, kernel_size=3, strides=2, padding="same"))
        model.add(BatchNormalization())
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dropout(0.25))
        model.add(Conv2D(256, kernel_size=3, strides=1, padding="same"))
        model.add(BatchNormalization())
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dropout(0.25))
        model.add(Flatten())
        model.add(Dense(1, activation='sigmoid'))

        #model.summary()

        img = Input(shape=self.img_shape)
        validity = model(img)

        return Model(img, validity)

    def train(self, epochs, batch_size=128, save_interval=50, VBN=False):

        # Load the dataset
        (X_train, _), (_, _) = mnist.load_data()

        # Rescale -1 to 1
        X_train = X_train / 127.5 - 1.
        X_train = np.expand_dims(X_train, axis=3)

        # Adversarial ground truths
        valid = np.ones((batch_size, 1))
        fake = np.zeros((batch_size, 1))
        
        xaxis = np.arange(epochs)
        loss = np.zeros((2,epochs))

        for epoch in tqdm(range(epochs)):

            # ---------------------
            #  Train Discriminator
            # ---------------------

            # Select a random half of images
            idx = np.random.randint(0, X_train.shape[0], batch_size)
            imgs = X_train[idx]

            tf.keras.backend.get_session().run(tf.global_variables_initializer()) 
            # Sample noise and generate a batch of new images
            noise = np.random.normal(0, 1, (batch_size, self.latent_dim))
            gen_imgs = self.generator.predict(noise)

            # Train the discriminator (real classified as ones and generated as zeros)
            d_loss_real = self.discriminator.train_on_batch(imgs, valid)
            d_loss_fake = self.discriminator.train_on_batch(gen_imgs, fake)
            d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)

            # ---------------------
            #  Train Generator
            # ---------------------

            # Train the generator (wants discriminator to mistake images as real)
            g_loss = self.combined.train_on_batch(noise, valid)

            # Plot the progress
            #print ("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100*d_loss[1], g_loss))
            loss[0][epoch] = d_loss[0]
            loss[1][epoch] = g_loss
            # If at save interval => save generated image samples
            if epoch % save_interval == 0:
                self.save_imgs(epoch)
        plt.plot(xaxis,loss[0])
        plt.plot(xaxis,loss[1])
        plt.legend(('Discriminator', 'Generator'), loc='best')
        plt.xlabel('Epoch')
        plt.ylabel('Binary Crossentropy Loss')

    def save_imgs(self, epoch):
        r, c = 10, 10
        noise = np.random.normal(0, 1, (r * c, self.latent_dim))
        gen_imgs = self.generator.predict(noise)

        # Rescale images 0 - 1
        gen_imgs = 0.5 * gen_imgs + 0.5

        fig, axs = plt.subplots(r, c)
        gs = gridspec.GridSpec(r, c)
        gs.update(wspace=0.05, hspace=0.05)
        cnt = 0
        for i in range(r):
            for j in range(c):
                axs[i,j].imshow(gen_imgs[cnt, :,:,0], cmap='gray')
                axs[i,j].axis('off')
                cnt += 1
        fig.savefig("images/mnist_%d.png" % epoch)
        plt.close()

'''
if __name__ == '__main__':
    dcgan = DCGAN(virtual_batch_normalization=True)
    dcgan.train(epochs=4000, batch_size=32, save_interval=50)
'''