1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
|
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Virtual batch normalization.
This technique was first introduced in `Improved Techniques for Training GANs`
(Salimans et al, https://arxiv.org/abs/1606.03498). Instead of using batch
normalization on a minibatch, it fixes a reference subset of the data to use for
calculating normalization statistics.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_shape
from tensorflow.python.framework import tensor_util
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import init_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import nn
from tensorflow.python.ops import variable_scope
__all__ = [
'VBN',
]
def _static_or_dynamic_batch_size(tensor, batch_axis):
"""Returns the static or dynamic batch size."""
batch_size = array_ops.shape(tensor)[batch_axis]
static_batch_size = tensor_util.constant_value(batch_size)
return static_batch_size or batch_size
def _statistics(x, axes):
"""Calculate the mean and mean square of `x`.
Modified from the implementation of `tf.nn.moments`.
Args:
x: A `Tensor`.
axes: Array of ints. Axes along which to compute mean and
variance.
Returns:
Two `Tensor` objects: `mean` and `square mean`.
"""
# The dynamic range of fp16 is too limited to support the collection of
# sufficient statistics. As a workaround we simply perform the operations
# on 32-bit floats before converting the mean and variance back to fp16
y = math_ops.cast(x, dtypes.float32) if x.dtype == dtypes.float16 else x
# Compute true mean while keeping the dims for proper broadcasting.
shift = array_ops.stop_gradient(math_ops.reduce_mean(y, axes, keepdims=True))
shifted_mean = math_ops.reduce_mean(y - shift, axes, keepdims=True)
mean = shifted_mean + shift
mean_squared = math_ops.reduce_mean(math_ops.square(y), axes, keepdims=True)
mean = array_ops.squeeze(mean, axes)
mean_squared = array_ops.squeeze(mean_squared, axes)
if x.dtype == dtypes.float16:
return (math_ops.cast(mean, dtypes.float16),
math_ops.cast(mean_squared, dtypes.float16))
else:
return (mean, mean_squared)
def _validate_init_input_and_get_axis(reference_batch, axis):
"""Validate input and return the used axis value."""
if reference_batch.shape.ndims is None:
raise ValueError('`reference_batch` has unknown dimensions.')
ndims = reference_batch.shape.ndims
if axis < 0:
used_axis = ndims + axis
else:
used_axis = axis
if used_axis < 0 or used_axis >= ndims:
raise ValueError('Value of `axis` argument ' + str(used_axis) +
' is out of range for input with rank ' + str(ndims))
return used_axis
def _validate_call_input(tensor_list, batch_dim):
"""Verifies that tensor shapes are compatible, except for `batch_dim`."""
def _get_shape(tensor):
shape = tensor.shape.as_list()
del shape[batch_dim]
return shape
base_shape = tensor_shape.TensorShape(_get_shape(tensor_list[0]))
for tensor in tensor_list:
base_shape.assert_is_compatible_with(_get_shape(tensor))
class VBN(object):
"""A class to perform virtual batch normalization.
This technique was first introduced in `Improved Techniques for Training GANs`
(Salimans et al, https://arxiv.org/abs/1606.03498). Instead of using batch
normalization on a minibatch, it fixes a reference subset of the data to use
for calculating normalization statistics.
To do this, we calculate the reference batch mean and mean square, and modify
those statistics for each example. We use mean square instead of variance,
since it is linear.
Note that if `center` or `scale` variables are created, they are shared
between all calls to this object.
The `__init__` API is intended to mimic `tf.layers.batch_normalization` as
closely as possible.
"""
def __init__(self,
reference_batch,
axis=-1,
epsilon=1e-3,
center=True,
scale=True,
beta_initializer=init_ops.zeros_initializer(),
gamma_initializer=init_ops.ones_initializer(),
beta_regularizer=None,
gamma_regularizer=None,
trainable=True,
name=None,
batch_axis=0):
"""Initialize virtual batch normalization object.
We precompute the 'mean' and 'mean squared' of the reference batch, so that
`__call__` is efficient. This means that the axis must be supplied when the
object is created, not when it is called.
We precompute 'square mean' instead of 'variance', because the square mean
can be easily adjusted on a per-example basis.
Args:
reference_batch: A minibatch tensors. This will form the reference data
from which the normalization statistics are calculated. See
https://arxiv.org/abs/1606.03498 for more details.
axis: Integer, the axis that should be normalized (typically the features
axis). For instance, after a `Convolution2D` layer with
`data_format="channels_first"`, set `axis=1` in `BatchNormalization`.
epsilon: Small float added to variance to avoid dividing by zero.
center: If True, add offset of `beta` to normalized tensor. If False,
`beta` is ignored.
scale: If True, multiply by `gamma`. If False, `gamma` is
not used. When the next layer is linear (also e.g. `nn.relu`), this can
be disabled since the scaling can be done by the next layer.
beta_initializer: Initializer for the beta weight.
gamma_initializer: Initializer for the gamma weight.
beta_regularizer: Optional regularizer for the beta weight.
gamma_regularizer: Optional regularizer for the gamma weight.
trainable: Boolean, if `True` also add variables to the graph collection
`GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
name: String, the name of the ops.
batch_axis: The axis of the batch dimension. This dimension is treated
differently in `virtual batch normalization` vs `batch normalization`.
Raises:
ValueError: If `reference_batch` has unknown dimensions at graph
construction.
ValueError: If `batch_axis` is the same as `axis`.
"""
axis = _validate_init_input_and_get_axis(reference_batch, axis)
self._epsilon = epsilon
self._beta = 0
self._gamma = 1
self._batch_axis = _validate_init_input_and_get_axis(
reference_batch, batch_axis)
if axis == self._batch_axis:
raise ValueError('`axis` and `batch_axis` cannot be the same.')
with variable_scope.variable_scope(name, 'VBN',
values=[reference_batch]) as self._vs:
self._reference_batch = reference_batch
# Calculate important shapes:
# 1) Reduction axes for the reference batch
# 2) Broadcast shape, if necessary
# 3) Reduction axes for the virtual batchnormed batch
# 4) Shape for optional parameters
input_shape = self._reference_batch.shape
ndims = input_shape.ndims
reduction_axes = list(range(ndims))
del reduction_axes[axis]
self._broadcast_shape = [1] * len(input_shape)
self._broadcast_shape[axis] = input_shape[axis].value
self._example_reduction_axes = list(range(ndims))
del self._example_reduction_axes[max(axis, self._batch_axis)]
del self._example_reduction_axes[min(axis, self._batch_axis)]
params_shape = self._reference_batch.shape[axis]
# Determines whether broadcasting is needed. This is slightly different
# than in the `nn.batch_normalization` case, due to `batch_dim`.
self._needs_broadcasting = (
sorted(self._example_reduction_axes) != list(range(ndims))[:-2])
# Calculate the sufficient statistics for the reference batch in a way
# that can be easily modified by additional examples.
self._ref_mean, self._ref_mean_squares = _statistics(
self._reference_batch, reduction_axes)
self._ref_variance = (self._ref_mean_squares -
math_ops.square(self._ref_mean))
# Virtual batch normalization uses a weighted average between example
# statistics and the reference batch statistics.
ref_batch_size = _static_or_dynamic_batch_size(
self._reference_batch, self._batch_axis)
self._example_weight = 1. / (math_ops.to_float(ref_batch_size) + 1.)
self._ref_weight = 1. - self._example_weight
# Make the variables, if necessary.
if center:
self._beta = variable_scope.get_variable(
name='beta',
shape=(params_shape,),
initializer=beta_initializer,
regularizer=beta_regularizer,
trainable=trainable)
if scale:
self._gamma = variable_scope.get_variable(
name='gamma',
shape=(params_shape,),
initializer=gamma_initializer,
regularizer=gamma_regularizer,
trainable=trainable)
def _virtual_statistics(self, inputs, reduction_axes):
"""Compute the statistics needed for virtual batch normalization."""
cur_mean, cur_mean_sq = _statistics(inputs, reduction_axes)
vb_mean = (self._example_weight * cur_mean +
self._ref_weight * self._ref_mean)
vb_mean_sq = (self._example_weight * cur_mean_sq +
self._ref_weight * self._ref_mean_squares)
return (vb_mean, vb_mean_sq)
def _broadcast(self, v, broadcast_shape=None):
# The exact broadcast shape depends on the current batch, not the reference
# batch, unless we're calculating the batch normalization of the reference
# batch.
b_shape = broadcast_shape or self._broadcast_shape
if self._needs_broadcasting and v is not None:
return array_ops.reshape(v, b_shape)
return v
def reference_batch_normalization(self):
"""Return the reference batch, but batch normalized."""
with ops.name_scope(self._vs.name):
return nn.batch_normalization(self._reference_batch,
self._broadcast(self._ref_mean),
self._broadcast(self._ref_variance),
self._broadcast(self._beta),
self._broadcast(self._gamma),
self._epsilon)
def __call__(self, inputs):
"""Run virtual batch normalization on inputs.
Args:
inputs: Tensor input.
Returns:
A virtual batch normalized version of `inputs`.
Raises:
ValueError: If `inputs` shape isn't compatible with the reference batch.
"""
_validate_call_input([inputs, self._reference_batch], self._batch_axis)
with ops.name_scope(self._vs.name, values=[inputs, self._reference_batch]):
# Calculate the statistics on the current input on a per-example basis.
vb_mean, vb_mean_sq = self._virtual_statistics(
inputs, self._example_reduction_axes)
vb_variance = vb_mean_sq - math_ops.square(vb_mean)
# The exact broadcast shape of the input statistic Tensors depends on the
# current batch, not the reference batch. The parameter broadcast shape
# is independent of the shape of the input statistic Tensor dimensions.
b_shape = self._broadcast_shape[:] # deep copy
b_shape[self._batch_axis] = _static_or_dynamic_batch_size(
inputs, self._batch_axis)
return nn.batch_normalization(
inputs,
self._broadcast(vb_mean, b_shape),
self._broadcast(vb_variance, b_shape),
self._broadcast(self._beta, self._broadcast_shape),
self._broadcast(self._gamma, self._broadcast_shape),
self._epsilon)
|