aboutsummaryrefslogtreecommitdiff
path: root/report
diff options
context:
space:
mode:
Diffstat (limited to 'report')
-rwxr-xr-xreport/metadata.yaml6
-rwxr-xr-xreport/paper.md52
-rw-r--r--report/template.latex4
3 files changed, 32 insertions, 30 deletions
diff --git a/report/metadata.yaml b/report/metadata.yaml
index 20375f9..5f9f737 100755
--- a/report/metadata.yaml
+++ b/report/metadata.yaml
@@ -2,10 +2,14 @@
title: 'EE4-68 Pattern Recognition (2018-2019) CW2'
author:
- name: Vasil Zlatanov (01120518), Nunzio Pucci (01113180)
- location: vz215@ic.ac.uk, np1915@ic.ac.uk
+ email: vz215@ic.ac.uk, np1915@ic.ac.uk
+ link: 'Sources: < [git](https://git.skozl.com/e4-pattern/) - [tar](https://git.skozl.com/e4-pattern/snapshot/vz215_np1915-master.tar.gz) - [zip](https://git.skozl.com/e4-pattern/snapshot/vz215_np1915-master.zip) >'
numbersections: yes
lang: en
babel-lang: english
+nocite: |
+ @deepreid, @sklearn
+
abstract: |
This report analyses distance metrics learning techniques with regards to
identification accuracy for the dataset CUHK03. The baseline method used for
diff --git a/report/paper.md b/report/paper.md
index 6358445..a961be0 100755
--- a/report/paper.md
+++ b/report/paper.md
@@ -130,7 +130,7 @@ repository complimenting this paper.
The approach addressed to improve the identification performance is based on
k-reciprocal reranking. The following section summarizes the idea behind
-the method illustrated in **REFERENCE PAPER**.
+the method illustrated in reference @rerank-paper.
We define $N(p,k)$ as the top k elements of the ranklist generated through NN,
where p is a query image. The k reciprocal ranklist, $R(p,k)$ is defined as the
@@ -180,12 +180,35 @@ This is done through a simple multi-direction search algorithm followed by exhau
$k_{1_{opt}}$ and $k_{2_{opt}}$ for eleven values of $\lambda$ from zero(only Jaccard distance) to one(only original distance)
in steps of 0.1. The results obtained through this approach suggest: $k_{1_{opt}}=9, k_{2_{opt}}=3, 0.1\leq\lambda_{opt}\leq 0.3$.
+It is possible to verify that the optimization of $k_{1_{opt}}$, $k_{2_{opt}}$ and $\lambda$
+has been successful. Figures \ref{fig:pqvals} and \ref{fig:lambda} show that the optimal values obtained from
+training are close to the ones for the local maximum of gallery and query.
+
+\begin{figure}
+\begin{center}
+\includegraphics[width=12em]{fig/pqvals.pdf}
+\includegraphics[width=12em]{fig/trainpqvals.pdf}
+\caption{Identification accuracy varying K1 and K2 (gallery-query left, train right) KL=0.3}
+\label{fig:pqvals}
+\end{center}
+\end{figure}
+
+\begin{figure}
+\begin{center}
+\includegraphics[width=12em]{fig/lambda_acc.pdf}
+\includegraphics[width=12em]{fig/lambda_acc_tr.pdf}
+\caption{Top 1 Identification Accuracy with Rerank varying lambda(gallery-query left, train right) K1=9, K2=3}
+\label{fig:lambda}
+\end{center}
+\end{figure}
+
+
## k-reciprocal Reranking Evaluation
Reranking achieves better results than the other baseline methods analyzed both as $top k$
accuracy and mean average precision.
It is also necessary to estimate how precise the ranklist generated is.
-For this reason an additional method of evaluation is introduced: mAP.
+For this reason an additional method of evaluation is introduced: mAP. See reference @mAP.
It is possible to see in figure \ref{fig:ranklist2} how the ranklist generated for the same five queries of figure \ref{fig:eucrank}
has improved for the fifth query. The mAP improves from 47% to 61.7%.
@@ -211,32 +234,7 @@ The difference between the $top k$ accuracies of the two methods gets smaller as
\end{center}
\end{figure}
-It is possible to verify that the optimization of $k_{1_{opt}}$, $k_{2_{opt}}$ and $\lambda$
-has been successful. Figures \ref{fig:pqvals} and \ref{fig:lambda} show that the optimal values obtained from
-training are close to the ones for the local maximum of gallery and query.
-
-\begin{figure}
-\begin{center}
-\includegraphics[width=12em]{fig/pqvals.pdf}
-\includegraphics[width=12em]{fig/trainpqvals.pdf}
-\caption{Identification accuracy varying K1 and K2 (gallery-query left, train right) KL=0.3}
-\label{fig:pqvals}
-\end{center}
-\end{figure}
-
-\begin{figure}
-\begin{center}
-\includegraphics[width=12em]{fig/lambda_acc.pdf}
-\includegraphics[width=12em]{fig/lambda_acc_tr.pdf}
-\caption{Top 1 Identification Accuracy with Rerank varying lambda(gallery-query left, train right) K1=9, K2=3}
-\label{fig:lambda}
-\end{center}
-\end{figure}
-
# Conclusion
# References
-# Appendix
-
-
diff --git a/report/template.latex b/report/template.latex
index 49b4963..9917236 100644
--- a/report/template.latex
+++ b/report/template.latex
@@ -217,8 +217,8 @@ $if(author)$
\IEEEauthorblockN{$author.name$}
\IEEEauthorblockA{%
$author.affiliation$ \\
- $author.location$ \\
- $author.email$}
+ $author.email$ \\
+ $author.link$}
$sep$ \and
$endfor$
}