diff options
Diffstat (limited to 'report')
-rwxr-xr-x | report/paper.md | 84 |
1 files changed, 46 insertions, 38 deletions
diff --git a/report/paper.md b/report/paper.md index dc22600..961937b 100755 --- a/report/paper.md +++ b/report/paper.md @@ -70,46 +70,11 @@ two computation techniques used shows that the difference is very small (due to rounding of the np.eigh function when calculating the eigenvalues and eigenvectors of the matrices A\textsuperscript{T}A (NxN) and AA\textsuperscript{T} -(DxD)). - -The first ten biggest eigenvalues obtained with each method -are shown in table \ref{tab:eigen}. - -\begin{table}[ht] -\centering -\begin{tabular}[t]{cc} -PCA &Fast PCA\\ -2.9755E+05 &2.9828E+05\\ -1.4873E+05 &1.4856E+05\\ -1.2286E+05 &1.2259E+05\\ -7.5084E+04 &7.4950E+04\\ -6.2575E+04 &6.2428E+04\\ -4.7024E+04 &4.6921E+04\\ -3.7118E+04 &3.7030E+04\\ -3.2101E+04 &3.2046E+04\\ -2.7871E+04 &2.7814E+04\\ -2.4396E+04 &2.4339E+04\\ -\end{tabular} -\caption{Comparison of eigenvalues obtain with the two computation methods} -\label{tab:eigen} -\end{table} +(DxD)). The first ten biggest eigenvalues obtained with each method +are shown in Appendix, table \ref{tab:eigen}. It can be proven that the eigenvalues obtained are mathematically the same [@lecture-notes], -and the there is a relation between the eigenvectors obtained: - -Computing the eigenvectors **u\textsubscript{i}** for the DxD matrix AA\textsuperscript{T} -we obtain a very large matrix. The computation process can get very expensive when $D \gg N$. - -For such reason we compute the eigenvectors **v\textsubscript{i}** of the NxN -matrix A\textsuperscript{T}A. From the computation it follows that $A\textsuperscript{T}A\boldsymbol{v\textsubscript{i}} = \lambda \textsubscript{i}\boldsymbol{v\textsubscript{i}}$. - -Multiplying both sides by A we obtain: - -$$ AA\textsuperscript{T}A\boldsymbol{v\textsubscript{i}} = \lambda \textsubscript{i}A\boldsymbol{v\textsubscript{i}} \rightarrow SA\boldsymbol{v\textsubscript{i}} = \lambda \textsubscript{i}A\boldsymbol{v\textsubscript{i}} $$ - -We know that $S\boldsymbol{u\textsubscript{i}} = \lambda \textsubscript{i}\boldsymbol{u\textsubscript{i}}$. - -From here it follows that AA\textsuperscript{T} and A\textsuperscript{T}A have the same eigenvalues and their eigenvectors follow the relationship $\boldsymbol{u\textsubscript{i}} = A\boldsymbol{v\textsubscript{i}}$ +and the there is a relation between the eigenvectors obtained: $\boldsymbol{u\textsubscript{i}} = A\boldsymbol{v\textsubscript{i}}$. (*Proof in the appendix*). It can be noticed that we effectively don't lose any data calculating the eigenvectors for PCA with the second method. The main advantages of it are in terms of speed, @@ -504,3 +469,46 @@ Seed & Individual$(M=120)$ & Bag + Feature Ens.$(M=60+95)$\\ \hline \end{table} # References + +#Appendix + +##Eigenvectors and Eigenvalues in fast PCA + +**Table showing eigenvalues obtained with each method** + +\begin{table}[ht] +\centering +\begin{tabular}[t]{cc} +PCA &Fast PCA\\ +2.9755E+05 &2.9828E+05\\ +1.4873E+05 &1.4856E+05\\ +1.2286E+05 &1.2259E+05\\ +7.5084E+04 &7.4950E+04\\ +6.2575E+04 &6.2428E+04\\ +4.7024E+04 &4.6921E+04\\ +3.7118E+04 &3.7030E+04\\ +3.2101E+04 &3.2046E+04\\ +2.7871E+04 &2.7814E+04\\ +2.4396E+04 &2.4339E+04\\ +\end{tabular} +\caption{Comparison of eigenvalues obtain with the two computation methods} +\label{tab:eigen} +\end{table} + +**Proof of relationship between eigenvalues and eigenvectors in the different methods** + +Computing the eigenvectors **u\textsubscript{i}** for the DxD matrix AA\textsuperscript{T} +we obtain a very large matrix. The computation process can get very expensive when $D \gg N$. + +For such reason we compute the eigenvectors **v\textsubscript{i}** of the NxN +matrix A\textsuperscript{T}A. From the computation it follows that $A\textsuperscript{T}A\boldsymbol{v\textsubscript{i}} = \lambda \textsubscript{i}\boldsymbol{v\textsubscript{i}}$. + +Multiplying both sides by A we obtain: + +$$ AA\textsuperscript{T}A\boldsymbol{v\textsubscript{i}} = \lambda \textsubscript{i}A\boldsymbol{v\textsubscript{i}} \rightarrow SA\boldsymbol{v\textsubscript{i}} = \lambda \textsubscript{i}A\boldsymbol{v\textsubscript{i}} $$ + +We know that $S\boldsymbol{u\textsubscript{i}} = \lambda \textsubscript{i}\boldsymbol{u\textsubscript{i}}$. + +From here it follows that AA\textsuperscript{T} and A\textsuperscript{T}A have the same eigenvalues and their eigenvectors follow the relationship $\boldsymbol{u\textsubscript{i}} = A\boldsymbol{v\textsubscript{i}}$ + + |