From 858169eab2043dbacfe160f7e6873501c13f8287 Mon Sep 17 00:00:00 2001 From: nunzip Date: Tue, 20 Nov 2018 18:10:00 +0000 Subject: Add variance part 1 --- report/paper.md | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) (limited to 'report') diff --git a/report/paper.md b/report/paper.md index bd7ef71..32db134 100755 --- a/report/paper.md +++ b/report/paper.md @@ -42,8 +42,8 @@ figure \ref{fig:mean_face}. \end{center} \end{figure} -To perform face recognition best M eigenvectors associated with the -largest eigenvalues are chosen. We found that the opimal value for M +To perform face recognition the best M eigenvectors associated with the +largest eigenvalues (carrying the largest data variance, fig. \ref{fig:eigvariance}) are chosen. We found that the opimal value for M when when performing PCA is $M=99$ with an accuracy of 57%. For larger M the accuracy plateaus. -- cgit v1.2.3-54-g00ecf