#!/usr/bin/env python # Author: Vasil Zlatanov, Nunzio Pucci # EE4 Pattern Recognition coursework # # usage: train.py [-h] -i DATA [-m EIGEN] [-M REIGEN] [-e ENSEMBLE] [-b] # [-R RANDOM] [-n NEIGHBORS] [-f FACES] [-c] [-s SEED] # [-t SPLIT] [-2] [-p] [-l] [-r RECONSTRUCT] [-cm] [-q] [-pr] # [-alt] import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import sys import random import os import json import scipy.io from random import randint from sklearn.neighbors import KNeighborsClassifier from sklearn.neighbors import DistanceMetric from sklearn.cluster import KMeans from sklearn.decomposition import PCA from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.metrics import confusion_matrix from sklearn.metrics import accuracy_score import argparse import numpy as np from numpy import genfromtxt from numpy import linalg as LA from timeit import default_timer as timer from scipy.spatial.distance import cdist #prob query, gal train def re_ranking(probFea,galFea,k1,k2,lambda_value, MemorySave = False, Minibatch = 2000): query_num = probFea.shape[0] all_num = query_num + galFea.shape[0] feat = np.append(probFea,galFea,axis = 0) feat = feat.astype(np.float16) print('computing original distance') if MemorySave: original_dist = np.zeros(shape = [all_num,all_num],dtype = np.float16) i = 0 while True: it = i + Minibatch if it < np.shape(feat)[0]: original_dist[i:it,] = np.power(cdist(feat[i:it,],feat),2).astype(np.float16) else: original_dist[i:,:] = np.power(cdist(feat[i:,],feat),2).astype(np.float16) break i = it else: original_dist = cdist(feat,feat).astype(np.float16) original_dist = np.power(original_dist,2).astype(np.float16) del feat gallery_num = original_dist.shape[0] original_dist = np.transpose(original_dist/np.max(original_dist,axis = 0)) V = np.zeros_like(original_dist).astype(np.float16) initial_rank = np.argsort(original_dist).astype(np.int32) print('starting re_ranking') for i in range(all_num): # k-reciprocal neighbors forward_k_neigh_index = initial_rank[i,:k1+1] backward_k_neigh_index = initial_rank[forward_k_neigh_index,:k1+1] fi = np.where(backward_k_neigh_index==i)[0] k_reciprocal_index = forward_k_neigh_index[fi] k_reciprocal_expansion_index = k_reciprocal_index for j in range(len(k_reciprocal_index)): candidate = k_reciprocal_index[j] candidate_forward_k_neigh_index = initial_rank[candidate,:int(np.around(k1/2))+1] candidate_backward_k_neigh_index = initial_rank[candidate_forward_k_neigh_index,:int(np.around(k1/2))+1] fi_candidate = np.where(candidate_backward_k_neigh_index == candidate)[0] candidate_k_reciprocal_index = candidate_forward_k_neigh_index[fi_candidate] if len(np.intersect1d(candidate_k_reciprocal_index,k_reciprocal_index))> 2/3*len(candidate_k_reciprocal_index): k_reciprocal_expansion_index = np.append(k_reciprocal_expansion_index,candidate_k_reciprocal_index) k_reciprocal_expansion_index = np.unique(k_reciprocal_expansion_index) weight = np.exp(-original_dist[i,k_reciprocal_expansion_index]) V[i,k_reciprocal_expansion_index] = weight/np.sum(weight) original_dist = original_dist[:query_num,] if k2 != 1: V_qe = np.zeros_like(V,dtype=np.float16) for i in range(all_num): V_qe[i,:] = np.mean(V[initial_rank[i,:k2],:],axis=0) V = V_qe del V_qe del initial_rank invIndex = [] for i in range(gallery_num): invIndex.append(np.where(V[:,i] != 0)[0]) jaccard_dist = np.zeros_like(original_dist,dtype = np.float16) for i in range(query_num): temp_min = np.zeros(shape=[1,gallery_num],dtype=np.float16) indNonZero = np.where(V[i,:] != 0)[0] indImages = [] indImages = [invIndex[ind] for ind in indNonZero] for j in range(len(indNonZero)): temp_min[0,indImages[j]] = temp_min[0,indImages[j]]+ np.minimum(V[i,indNonZero[j]],V[indImages[j],indNonZero[j]]) jaccard_dist[i] = 1-temp_min/(2-temp_min) final_dist = jaccard_dist*(1-lambda_value) + original_dist*lambda_value del original_dist del V del jaccard_dist final_dist = final_dist[:query_num,query_num:] return final_dist def draw_results(args, target_test, target_pred): acc_sc = accuracy_score(target_test, target_pred) cm = confusion_matrix(target_test, target_pred) print('Accuracy: ', acc_sc) if (args.conf_mat): plt.matshow(cm, cmap='Blues') plt.colorbar() plt.ylabel('Actual') plt.xlabel('Predicted') plt.show() return def test_model(train_data, test_data, target_train, target_test, args): classifier = KNeighborsClassifier(n_neighbors=args.neighbors, metric='euclidean') # else: # S = LA.inv(np.cov(train_data, rowvar=False)) # print(S.shape) # classifier = KNeighborsClassifier(n_neighbors=args.neighbors, metric='mahalanobis', metric_params={'VI':S}) classifier.fit(train_data, target_train) target_pred = classifier.predict(test_data) dist, nn_idx = classifier.kneighbors(test_data) #USE NN_IDX TO RECOVER NEIGHBORS return target_pred def main(): parser = argparse.ArgumentParser() parser.add_argument("-R", "--random", help="Number of eigen value to randomise", type=int) parser.add_argument("-n", "--neighbors", help="How many neighbors to use", type=int, default = 1) parser.add_argument("-c", "--principal", help="Show principal components", action='store_true') parser.add_argument("-s", "--seed", help="Seed to use", type=int, default=0) parser.add_argument("-t", "--split", help="Fractoin of data to use for testing", type=float, default=0.3) parser.add_argument("-2", "--grapheigen", help="Swow 2D graph of targets versus principal components", action='store_true') parser.add_argument("-cm", "--conf_mat", help="Show visual confusion matrix", action='store_true') parser.add_argument("-q", "--pca_r", help="Use Reduced PCA", action='store_true') parser.add_argument("-pr", "--prob", help="Certainty on each guess", action='store_true') parser.add_argument("-km", "--kmean", help="Perform Kmeans", action='store_true', default=0) parser.add_argument("-ma", "--mala", help="Perform Mahalanobis Distance metric", action='store_true', default=0) parser.add_argument("-e", "--eucl", help="Standard euclidean", action='store_true', default=0) parser.add_argument("-ka", "--reranka", help="Parameter 1 for Rerank", type=int, default = 20) parser.add_argument("-kb", "--rerankb", help="Parameter 2 for rerank", type=int, default = 6) args = parser.parse_args() ###PART2 INPUT DATA mat = scipy.io.loadmat('data/cuhk03_new_protocol_config_labeled.mat') camId = mat['camId'] filelist = mat['filelist'] gallery_idx = mat['gallery_idx'] labels = mat['labels'] query_idx = mat['query_idx'] train_idx = mat['train_idx'] with open("data/feature_data.json", "r") as read_file: feature_vectors = np.array(json.load(read_file)) query_cam_1 = 0 for i in range(query_idx.size): if camId[query_idx[i]] == 1: query_cam_1 = query_cam_1 + 1 query_cam_2 = query_idx.size - query_cam_1 train_cam_1 = 0 for i in range(gallery_idx.size): if camId[gallery_idx[i]] == 1: train_cam_1 = train_cam_1 + 1 train_cam_2 = gallery_idx.size - train_cam_1 train_data_1 = np.zeros(((train_cam_1),(feature_vectors.shape[1]))) train_label_1 = np.zeros(train_cam_1) test_data_1 = np.zeros(((query_cam_1),(feature_vectors.shape[1]))) test_label_1 = np.zeros(query_cam_1) train_data_2 = np.zeros(((train_cam_2),(feature_vectors.shape[1]))) train_label_2 = np.zeros(train_cam_2) test_data_2 = np.zeros(((query_cam_2),(feature_vectors.shape[1]))) test_label_2 = np.zeros(query_cam_2) i_1 = 0 i_2 = 0 for i in range(gallery_idx.size): if camId[gallery_idx[i]] == 1: train_data_1[i_1] = feature_vectors[gallery_idx[i]] i_1 = i_1 + 1 else: train_data_2[i_2] = feature_vectors[gallery_idx[i]] i_2 = i_2 + 1 i_1 = 0 i_2 = 0 for i in range(query_idx.size): if camId[query_idx[i]] == 1: test_data_1[i_1] = feature_vectors[query_idx[i]] i_1 = i_1 + 1 else: test_data_2[i_2] = feature_vectors[query_idx[i]] i_2 = i_2 + 1 i_1 = 0 i_2 = 0 for i in range(gallery_idx.size): if camId[gallery_idx[i]] == 1: train_label_1[i_1] = labels[gallery_idx[i]] i_1 = i_1 + 1 else: train_label_2[i_2] = labels[gallery_idx[i]] i_2 = i_2 + 1 i_1 = 0 i_2 = 0 for i in range(query_idx.size): if camId[query_idx[i]] == 1: test_label_1[i_1] = labels[query_idx[i]] i_1 = i_1 + 1 else: test_label_2[i_2] = labels[query_idx[i]] i_2 = i_2 + 1 if (args.mala): final_dist = re_ranking(test_data_1, train_data_2, args.reranka, args.rerankb, 0.3) target_pred = np.zeros(final_dist.shape[0]) for i in range(test_label_1.size): target_pred[i] = train_label_2[np.argmin(final_dist[i])] draw_results(args, test_label_1, target_pred) final_dist2 = re_ranking(test_data_2, train_data_1, args.reranka, args.rerankb, 0.3) target_pred2 = np.zeros(final_dist2.shape[0]) for i in range(test_label_2.size): target_pred2[i] = train_label_1[np.argmin(final_dist2[i])] draw_results(args, test_label_2, target_pred2) elif(args.kmean): km_labels_1 = np.arange(1,np.max(labels)+1) km_labels_2 = np.arange(1,np.max(labels)+1) km_train_data_1 = np.zeros(((km_labels_1.size),(feature_vectors.shape[1]))) km_train_data_2 = np.zeros(((km_labels_2.size),(feature_vectors.shape[1]))) km_train_data_1 = KMeans(n_clusters=int(np.max(labels)),random_state=0).fit(train_data_1) km_train_data_2 = KMeans(n_clusters=int(np.max(labels)),random_state=0).fit(train_data_2) km_idx_1 = km_train_data_1.labels_ for i in range(np.max(labels)): class_vote = np.zeros(np.max(labels)) for q in range(km_idx_1.size): if km_idx_1[q]==i: class_vote[int(train_label_1[q])-1] = class_vote[int(train_label_1[q])-1] + 1 km_labels_1[i] = np.argmax(class_vote) + 1 target_pred = test_model(km_train_data_1.cluster_centers_, test_data_2, km_labels_1, test_label_2, args) draw_results(args, test_label_2, target_pred) km_idx_2 = km_train_data_2.labels_ for i in range(np.max(labels)): class_vote = np.zeros(np.max(labels)) for q in range(km_idx_2.size): if km_idx_2[q]==i: class_vote[int(train_label_2[q])-1] = class_vote[int(train_label_2[q])-1] + 1 km_labels_2[i] = np.argmax(class_vote) + 1 target_pred = test_model(km_train_data_2.cluster_centers_, test_data_1, km_labels_2, test_label_1, args) draw_results(args, test_label_1, target_pred) elif(args.eucl): target_pred = test_model(train_data_2, test_data_1, train_label_2, test_label_1, args) draw_results(args, test_label_1, target_pred) target_pred = test_model(train_data_1, test_data_2, train_label_1, test_label_2, args) draw_results(args, test_label_2, target_pred) print('N-Query from cam 1:', test_data_1.shape) print('N-Query from cam 2:', test_data_2.shape) print('Complete') if __name__ == "__main__": main()