#!/usr/bin/env python # Author: Vasil Zlatanov, Nunzio Pucci # EE4 Pattern Recognition coursework # # usage: train.py [-h] -i DATA -o MODEL [-m M] import warnings with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=DeprecationWarning) import imp import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import sys import random import os import psutil from random import randint from sklearn.neighbors import KNeighborsClassifier from sklearn.decomposition import PCA from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.metrics import confusion_matrix from sklearn.metrics import accuracy_score import argparse import numpy as np from numpy import genfromtxt from numpy import linalg as LA from timeit import default_timer as timer n_faces = 52 n_cases = 10 n_pixels = 2576 # subtract the normal face from each row of the face matrix def normalise_faces(deviations_tr, average_face, faces): faces = np.subtract(faces, np.tile(average_face, (faces.shape[0],1))) return np.divide(faces, deviations_tr) # Split data into training and testing sets def test_split(n_faces, raw_faces, split, seed): random.seed(seed) raw_faces_split = np.split(raw_faces,n_cases) n_training_faces = int(round(n_cases*(1 - split))) n_test_faces = n_cases - n_training_faces faces_train = np.zeros((n_faces, n_training_faces, n_pixels)) faces_test = np.zeros((n_faces, n_test_faces, n_pixels)) target_train = np.repeat(np.arange(n_faces), n_training_faces) target_test = np.repeat(np.arange(n_faces), n_test_faces) for x in range(n_faces): samples = random.sample(range(n_cases), n_training_faces) faces_train[x] = [raw_faces[i+n_cases*x] for i in samples] faces_test[x] = [raw_faces[i+n_cases*x] for i in range(n_cases) if i not in samples] faces_train = faces_train.reshape(n_faces*n_training_faces, n_pixels) faces_test = faces_test.reshape(n_faces*n_test_faces, n_pixels) return faces_train, faces_test, target_train, target_test def draw_results(args, target_test, target_pred): acc_sc = accuracy_score(target_test, target_pred) cm = confusion_matrix(target_test, target_pred) print('Accuracy: ', acc_sc) if (args.conf_mat): plt.matshow(cm, cmap='Blues') plt.colorbar() plt.ylabel('Actual') plt.xlabel('Predicted') plt.show() return def test_model(M, faces_train, faces_test, target_train, target_test, args): raw_faces_train = faces_train raw_faces_test = faces_test explained_variances = () distances = np.zeros(faces_test.shape[0]) if args.pca or args.pca_r: # faces_pca containcts the principial components or the M most variant eigenvectors average_face = np.mean(faces_train, axis=0) #PLOTTING MEAN FACE #plt.imshow(average_face.reshape([46,56]).T, cmap = 'gist_gray') plt.show() if args.classifyalt: deviations_tr = np.ones(n_pixels) else: deviations_tr = np.std(faces_train, axis=0) # deviations_tst = np.std(faces_test, axis=0) faces_train = normalise_faces(deviations_tr, average_face, faces_train) faces_test = normalise_faces(deviations_tr, average_face, faces_test) if (args.pca_r): e_vals, e_vecs = LA.eigh(np.dot(faces_train, faces_train.T)) e_vecs = np.dot(faces_train.T, e_vecs) e_vecs = e_vecs/LA.norm(e_vecs, axis = 0) else: e_vals, e_vecs = LA.eigh(np.cov(faces_train.T)) # e_vecs = normalise_faces(np.mean(e_vecs,axis=0), e_vecs) #PLOTTING NON-ZERO EVALS #if args.pca: # plt.semilogy(range(2576), np.absolute(416*np.flip(e_vals))) # plt.show() e_vals = np.flip(e_vals) e_vecs = np.fliplr(e_vecs).T if args.random: random_features = random.sample(range(M-args.random, M), args.random) for i in range(args.random): e_vals[M-i] = e_vals[random_features[i]] e_vecs[M-i] = e_vecs[random_features[i]] e_vals = e_vals[:M] e_vecs = e_vecs[:M] deviations_tr = np.flip(deviations_tr) # deviations_tst = np.flip(deviations_tst) faces_train = np.dot(faces_train, e_vecs.T) faces_test = np.dot(faces_test, e_vecs.T) rec_vecs = np.add(np.tile(average_face, (faces_test.shape[0], 1)), np.dot(faces_test, e_vecs) * deviations_tr) distances = LA.norm(raw_faces_test - rec_vecs, axis=1); if args.reconstruct: rec_vec = np.add(average_face, np.dot(faces_train[args.reconstruct], e_vecs) * deviations_tr) ar = plt.subplot(2, 1, 1) ar.imshow(rec_vec.reshape([46,56]).T, cmap = 'gist_gray') ar = plt.subplot(2, 1, 2) ar.imshow(raw_faces_train[args.reconstruct].reshape([46,56]).T, cmap = 'gist_gray') plt.show() if args.lda: if args.pca_r or (args.pca and M > n_training_faces - n_faces): lda = LinearDiscriminantAnalysis(n_components=M, solver='svd') else: lda = LinearDiscriminantAnalysis(n_components=M, store_covariance='True') faces_train = lda.fit_transform(faces_train, target_train) faces_test = lda.transform(faces_test) class_means = lda.means_ e_vals = lda.explained_variance_ratio_ # scatter_matrix = lda.covariance_; print("Rank of scatter:", LA.matrix_rank(scatter_matrix)) if args.faces: if args.lda: for i in range(10): ax = plt.subplot(2, 5, i + 1) ax.imshow(class_means[i].reshape([46,56]).T) else: for i in range(args.faces): ax = plt.subplot(2, args.faces/2, i + 1) ax.imshow(e_vecs[i].reshape([46, 56]).T, cmap = 'gist_gray') plt.show() if args.principal: e_vals = np.multiply(np.divide(e_vals, np.sum(e_vals)), 100) plt.bar(np.arange(M), e_vals[:M]) plt.ylabel('Varaiance ratio (%)');plt.xlabel('Number') plt.show() if args.grapheigen: #graph_eigen() # Colors for distinct individuals cols = ['#{:06x}'.format(randint(0, 0xffffff)) for i in range(n_faces)] pltCol = [cols[int(k)] for k in target_train] fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.scatter(faces_train[:, 0], faces_train[:, 1], faces_train[:, 2], marker='o', color=pltCol) plt.show() classifier = KNeighborsClassifier(n_neighbors=args.neighbors) classifier.fit(faces_train, target_train) target_pred = classifier.predict(faces_test) if args.prob: targer_prob = classifier.predict_proba(faces_test) targer_prob_vec = np.zeros(104) for i in range (104): j = int(np.floor(i/2)) targer_prob_vec [i] = targer_prob[i][j] avg_targer_prob = np.zeros(n_faces) for i in range (n_faces): avg_targer_prob[i] = (targer_prob_vec[2*i] + targer_prob_vec[2*i + 1])/2 #WE CAN FIX THIS BY RESHAPING TARGER_PROB_VEC AND TAKING THE MEAN ON THE RIGHT AXIS plt.bar(range(n_faces), avg_targer_prob) plt.show() #Better n_neighbors = 2 return target_pred, distances def main(): parser = argparse.ArgumentParser() parser.add_argument("-i", "--data", help="Input CSV file", required=True) parser.add_argument("-m", "--eigen", help="Number of eigenvalues in model", type=int, default = 10 ) parser.add_argument("-M", "--reigen", help="Number of eigenvalues in model", type=int) parser.add_argument("-e", "--ensemble", help="Number of ensemmbles to use", type=int, default = 0) parser.add_argument("-b", "--bagging", help="Number of bags to use", action='store_true') parser.add_argument("-R", "--random", help="Number of eigen value to randomise", type=int) parser.add_argument("-n", "--neighbors", help="How many neighbors to use", type=int, default = 1) ##USING STANDARD 1 FOR NN ACCURACY parser.add_argument("-f", "--faces", help="Show faces", type=int, default = 0) parser.add_argument("-c", "--principal", help="Show principal components", action='store_true') parser.add_argument("-s", "--seed", help="Seed to use", type=int, default=0) parser.add_argument("-t", "--split", help="Fractoin of data to use for testing", type=float, default=0.3) ### best split for lda = 22 ### best plit for pca = 20 parser.add_argument("-2", "--grapheigen", help="Swow 2D graph of targets versus principal components", action='store_true') parser.add_argument("-p", "--pca", help="Use PCA", action='store_true') parser.add_argument("-l", "--lda", help="Use LDA", action='store_true') parser.add_argument("-r", "--reconstruct", help="Use PCA reconstruction, specify face NR", type=int, default=0) parser.add_argument("-cm", "--conf_mat", help="Show visual confusion matrix", action='store_true') parser.add_argument("-q", "--pca_r", help="Use Reduced PCA", action='store_true') parser.add_argument("-pr", "--prob", help="Certainty on each guess", action='store_true') parser.add_argument("-alt", "--classifyalt", help="Alternative method ON", action='store_true') args = parser.parse_args() if args.lda and args.classifyalt: sys.exit("LDA and Alt PCA can not be performed together") raw_faces = genfromtxt(args.data, delimiter=',') targets = np.repeat(np.arange(n_faces),n_cases) faces_train, faces_test, target_train, target_test = test_split(n_faces, raw_faces, args.split, args.seed) if args.ensemble: n_training_faces = int(round(n_cases*(1 - args.split))) faces_train_ens = np.zeros((args.ensemble, n_faces, n_training_faces, n_pixels)) for x in range(args.ensemble): if args.bagging: for k in range(n_faces): samples = random.choices(range(n_training_faces), k=n_training_faces) faces_train_ens[x][k] = [faces_train[i+n_training_faces*k] for i in samples] else: faces_train_ens[x] = faces_train.reshape((n_faces, n_training_faces, n_pixels)) faces_train_ens = faces_train_ens.reshape(args.ensemble, n_faces*n_training_faces, n_pixels) if args.classifyalt: faces_train = faces_train.reshape(n_faces, int(faces_train.shape[0]/n_faces), n_pixels) target_train = target_train.reshape(n_faces, int(target_train.shape[0]/n_faces)) distances = np.zeros((n_faces, faces_test.shape[0])) for i in range(n_faces): target_pred, distances[i] = test_model(args.eigen, faces_train[i], faces_test, target_train[i], target_test, args) target_pred = np.argmin(distances, axis=0) elif args.reigen: target_pred = np.zeros((args.reigen-args.eigen, target_test.shape[0])) accuracy = np.zeros(args.reigen-args.eigen) rec_error = np.zeros((args.reigen-args.eigen, target_test.shape[0])) for M in range(args.eigen, args.reigen): start = timer() target_pred[M - args.eigen], rec_error[M - args.eigen] = test_model(M, faces_train, faces_test, target_train, target_test, args) end = timer() print("Run with", M, "eigenvalues completed in ", end-start, "seconds") print("Memory Used:", psutil.Process(os.getpid()).memory_info().rss) accuracy[M - args.eigen] = accuracy_score(target_test, target_pred[M-args.eigen]) # Plot print('Max efficiency of ', max(accuracy), '% for M =', np.argmax(accuracy)) plt.plot(range(args.eigen, args.reigen), 100*accuracy) plt.xlabel('Number of Eigenvectors used (M)') plt.ylabel('Recognition Accuracy (%)') plt.grid(True) plt.show() elif args.ensemble: rec_error = np.zeros((args.ensemble, n_faces, faces_test.shape[0])) target_pred = np.zeros((args.ensemble, target_test.shape[0])) for i in range(args.ensemble): target_pred[i], rec_error[i] = test_model(args.eigen, faces_train_ens[i], faces_test, target_train, target_test, args) target_pred_comb = np.zeros(target_pred.shape[1]) target_pred = target_pred.astype(int).T for i in range(target_pred.shape[0]): target_pred_comb[i] = np.bincount(target_pred[i]).argmax() target_pred = target_pred_comb else: M = args.eigen start = timer() target_pred, distances = test_model(M, faces_train, faces_test, target_train, target_test, args) end = timer() draw_results(args, target_test, target_pred) if __name__ == "__main__": main()