diff options
author | Vasil Zlatanov <vasil.zlatanov@gmail.com> | 2015-03-02 00:15:25 +0100 |
---|---|---|
committer | Vasil Zlatanov <vasil.zlatanov@gmail.com> | 2015-03-02 00:15:25 +0100 |
commit | ccb5180240f527da6aacdffc0fffdd0789f57fc8 (patch) | |
tree | dbc339d347b334f04b166d4c23e6a977f1200268 /ratpoison/py/colorz.py | |
parent | 9f3edcf84c9883c370a7b696bcbcac13f3bf6e32 (diff) | |
download | dotfiles-ccb5180240f527da6aacdffc0fffdd0789f57fc8.tar.gz dotfiles-ccb5180240f527da6aacdffc0fffdd0789f57fc8.tar.bz2 dotfiles-ccb5180240f527da6aacdffc0fffdd0789f57fc8.zip |
fix for accidentaly deleted wp scripts
Diffstat (limited to 'ratpoison/py/colorz.py')
-rw-r--r-- | ratpoison/py/colorz.py | 71 |
1 files changed, 71 insertions, 0 deletions
diff --git a/ratpoison/py/colorz.py b/ratpoison/py/colorz.py new file mode 100644 index 0000000..8c00f0c --- /dev/null +++ b/ratpoison/py/colorz.py @@ -0,0 +1,71 @@ +from collections import namedtuple +from math import sqrt +import random +try: + import Image +except ImportError: + from PIL import Image + +Point = namedtuple('Point', ('coords', 'n', 'ct')) +Cluster = namedtuple('Cluster', ('points', 'center', 'n')) + +def get_points(img): + points = [] + w, h = img.size + for count, color in img.getcolors(w * h): + points.append(Point(color, 3, count)) + return points + +rtoh = lambda rgb: '#%s' % ''.join(('%02x' % p for p in rgb)) + +def colorz(filename, n=3): + img = Image.open(filename) + img.thumbnail((200, 200)) + w, h = img.size + + points = get_points(img) + clusters = kmeans(points, n, 1) + rgbs = [map(int, c.center.coords) for c in clusters] + return map(rtoh, rgbs) + +def euclidean(p1, p2): + return sqrt(sum([ + (p1.coords[i] - p2.coords[i]) ** 2 for i in range(p1.n) + ])) + +def calculate_center(points, n): + vals = [0.0 for i in range(n)] + plen = 0 + for p in points: + plen += p.ct + for i in range(n): + vals[i] += (p.coords[i] * p.ct) + return Point([(v / plen) for v in vals], n, 1) + +def kmeans(points, k, min_diff): + clusters = [Cluster([p], p, p.n) for p in random.sample(points, k)] + + while 1: + plists = [[] for i in range(k)] + + for p in points: + smallest_distance = float('Inf') + for i in range(k): + distance = euclidean(p, clusters[i].center) + if distance < smallest_distance: + smallest_distance = distance + idx = i + plists[idx].append(p) + + diff = 0 + for i in range(k): + old = clusters[i] + center = calculate_center(plists[i], old.n) + new = Cluster(plists[i], center, old.n) + clusters[i] = new + diff = max(diff, euclidean(old.center, new.center)) + + if diff < min_diff: + break + + return clusters |