aboutsummaryrefslogtreecommitdiff
path: root/ratpoison/py/colorz.py
diff options
context:
space:
mode:
authorVasil Zlatanov <vasil.zlatanov@gmail.com>2015-03-02 00:15:25 +0100
committerVasil Zlatanov <vasil.zlatanov@gmail.com>2015-03-02 00:15:25 +0100
commitccb5180240f527da6aacdffc0fffdd0789f57fc8 (patch)
treedbc339d347b334f04b166d4c23e6a977f1200268 /ratpoison/py/colorz.py
parent9f3edcf84c9883c370a7b696bcbcac13f3bf6e32 (diff)
downloaddotfiles-ccb5180240f527da6aacdffc0fffdd0789f57fc8.tar.gz
dotfiles-ccb5180240f527da6aacdffc0fffdd0789f57fc8.tar.bz2
dotfiles-ccb5180240f527da6aacdffc0fffdd0789f57fc8.zip
fix for accidentaly deleted wp scripts
Diffstat (limited to 'ratpoison/py/colorz.py')
-rw-r--r--ratpoison/py/colorz.py71
1 files changed, 71 insertions, 0 deletions
diff --git a/ratpoison/py/colorz.py b/ratpoison/py/colorz.py
new file mode 100644
index 0000000..8c00f0c
--- /dev/null
+++ b/ratpoison/py/colorz.py
@@ -0,0 +1,71 @@
+from collections import namedtuple
+from math import sqrt
+import random
+try:
+ import Image
+except ImportError:
+ from PIL import Image
+
+Point = namedtuple('Point', ('coords', 'n', 'ct'))
+Cluster = namedtuple('Cluster', ('points', 'center', 'n'))
+
+def get_points(img):
+ points = []
+ w, h = img.size
+ for count, color in img.getcolors(w * h):
+ points.append(Point(color, 3, count))
+ return points
+
+rtoh = lambda rgb: '#%s' % ''.join(('%02x' % p for p in rgb))
+
+def colorz(filename, n=3):
+ img = Image.open(filename)
+ img.thumbnail((200, 200))
+ w, h = img.size
+
+ points = get_points(img)
+ clusters = kmeans(points, n, 1)
+ rgbs = [map(int, c.center.coords) for c in clusters]
+ return map(rtoh, rgbs)
+
+def euclidean(p1, p2):
+ return sqrt(sum([
+ (p1.coords[i] - p2.coords[i]) ** 2 for i in range(p1.n)
+ ]))
+
+def calculate_center(points, n):
+ vals = [0.0 for i in range(n)]
+ plen = 0
+ for p in points:
+ plen += p.ct
+ for i in range(n):
+ vals[i] += (p.coords[i] * p.ct)
+ return Point([(v / plen) for v in vals], n, 1)
+
+def kmeans(points, k, min_diff):
+ clusters = [Cluster([p], p, p.n) for p in random.sample(points, k)]
+
+ while 1:
+ plists = [[] for i in range(k)]
+
+ for p in points:
+ smallest_distance = float('Inf')
+ for i in range(k):
+ distance = euclidean(p, clusters[i].center)
+ if distance < smallest_distance:
+ smallest_distance = distance
+ idx = i
+ plists[idx].append(p)
+
+ diff = 0
+ for i in range(k):
+ old = clusters[i]
+ center = calculate_center(plists[i], old.n)
+ new = Cluster(plists[i], center, old.n)
+ clusters[i] = new
+ diff = max(diff, euclidean(old.center, new.center))
+
+ if diff < min_diff:
+ break
+
+ return clusters