diff options
author | Vasil Zlatanov <v@skozl.com> | 2017-03-08 16:57:52 +0000 |
---|---|---|
committer | Vasil Zlatanov <v@skozl.com> | 2017-03-08 16:57:52 +0000 |
commit | 213cb6e2aa88360c2847555f062fbe54b0b274db (patch) | |
tree | 60f281dfeb30c9fcc746efc57adfb66286ef6df8 | |
parent | 2adb0e8d1735bbd4dc68e1d39d3e2682aba5400e (diff) | |
download | e2-matlab-213cb6e2aa88360c2847555f062fbe54b0b274db.tar.gz e2-matlab-213cb6e2aa88360c2847555f062fbe54b0b274db.tar.bz2 e2-matlab-213cb6e2aa88360c2847555f062fbe54b0b274db.zip |
-rw-r--r-- | coursework17/error_script.m | 91 |
1 files changed, 41 insertions, 50 deletions
diff --git a/coursework17/error_script.m b/coursework17/error_script.m index f17f234..83cf428 100644 --- a/coursework17/error_script.m +++ b/coursework17/error_script.m @@ -1,50 +1,41 @@ -% This script will carry out error analysis -R = 0.5; % 0.5Ohm -L = 0.0015; % 1.5mH - -data_points = 100000; -h_divisions = 1000; - -% Go on for a time constant -time_constant = L/R; -step = time_constant/data_points; - -T=150e-6; % 150us -f = 1/T; -w_c = 2*pi*f; -A = 6; - -Vin = @(t) A*cos(w_c*t); -current_initial=0; - -% e^m is the integratingn factor -% m = 0.5/0.0015; - -% Solution is made by multiplying by integrating factor and -% then integrating both sides - -A = 6*R/(R^2 + (w_c*L)^2); -B = 6*w_c*L/(R^2 + (w_c*L)^2); - -current_exact = @(t) A*cos(w_c*t) + B*sin(w_c*t) - A*exp((-R/L)*t); -%current_exact = @(t) 3/(m^2+w_c^2)*(2*m*cos(w_c*t) + 2*w_c*sin(w_c*t)); -Vout_exact = @(t) Vin(t) - current_exact(t)*R; - -for k=1:h_divisions - - [time_array, Vout_array] = ralston(R, L, Vin, current_initial, step*k, data_points*step); - - for j=1:data_points/k - error_array(j) = Vout_exact(time_array(j)) - Vout_array(j); - % Vout_plot(j) = Vout_exact(time_array(j)); - end - - % plot(time_array, Vout_array); - % figure; - % plot(time_array, Vout_plot); - % - max_array(k) = max(error_array); - max_t(k) = k*step; -end - -loglog(max_t, max_array); +% This script will carry out error analysis
+R = 0.5; % 0.5Ohm
+L = 0.0015; % 1.5mH
+
+data_points = 100000;
+h_divisions = 1000;
+
+% Go on for a time constant
+time_constant = L/R;
+step = time_constant/data_points;
+
+T=150e-6; % 150us
+f = 1/T;
+w = 2*pi*f;
+A = 6;
+
+Vin = @(t) A*cos(w*t);
+current_initial=0;
+
+
+A = 6*R/(R^2 + (w*L)^2);
+B = 6*w*L/(R^2 + (w*L)^2);
+
+current_exact = @(t) A*cos(w*t) + B*sin(w*t) - A*exp((-R/L)*t);
+Vout_exact = @(t) Vin(t) - current_exact(t)*R;
+
+for k=1:h_divisions
+
+ [time_array, Vout_array] = ralston(R, L, Vin, current_initial, step*k, data_points*step);
+
+ for j=1:data_points/k
+ error_array(j) = Vout_exact(time_array(j)) - Vout_array(j);
+ end
+ max_array(k) = max(error_array);
+ max_t(k) = k*step;
+end
+
+loglog(max_t, max_array);
+title('Order of error')
+xlabel('Time step size')
+ylabel('Maximum error')
|