blob: f17f2343993e3099e911e2d18187cc23124dd232 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
|
% This script will carry out error analysis
R = 0.5; % 0.5Ohm
L = 0.0015; % 1.5mH
data_points = 100000;
h_divisions = 1000;
% Go on for a time constant
time_constant = L/R;
step = time_constant/data_points;
T=150e-6; % 150us
f = 1/T;
w_c = 2*pi*f;
A = 6;
Vin = @(t) A*cos(w_c*t);
current_initial=0;
% e^m is the integratingn factor
% m = 0.5/0.0015;
% Solution is made by multiplying by integrating factor and
% then integrating both sides
A = 6*R/(R^2 + (w_c*L)^2);
B = 6*w_c*L/(R^2 + (w_c*L)^2);
current_exact = @(t) A*cos(w_c*t) + B*sin(w_c*t) - A*exp((-R/L)*t);
%current_exact = @(t) 3/(m^2+w_c^2)*(2*m*cos(w_c*t) + 2*w_c*sin(w_c*t));
Vout_exact = @(t) Vin(t) - current_exact(t)*R;
for k=1:h_divisions
[time_array, Vout_array] = ralston(R, L, Vin, current_initial, step*k, data_points*step);
for j=1:data_points/k
error_array(j) = Vout_exact(time_array(j)) - Vout_array(j);
% Vout_plot(j) = Vout_exact(time_array(j));
end
% plot(time_array, Vout_array);
% figure;
% plot(time_array, Vout_plot);
%
max_array(k) = max(error_array);
max_t(k) = k*step;
end
loglog(max_t, max_array);
|