1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
|
% Vin = aI' + bI
R = 0.5; % 0.5Ohm
L = 0.0015; % 1.5mH
data_points = 10000;
% Go on for 8 time constants
time_constant = L/R;
step = time_constant*8/data_points;
% Signal 1 Vin = 5.5V
Vin = @(t) 5.5 + 0*t; % 5.5V
current_initial=0;
[t, Vout] = ralston(R, L, Vin, current_initial, step, data_points*step);
plot(t, Vout);
% Signal 2a Vin = 5.5*exp(-t^2/r) V
Vin = @(t) 5.5*exp(-(t*160*10^(-6))^2) % 5.5V
current_initial=0;
[t, Vout] = ralston(R, L, Vin, current_initial, step, data_points*step);
plot(t, Vout);
% Signal 2b Vin = 5.5*exp(-t/r)
Vin = @(t) 5.5*exp(-t*160*10^(-6)) % 5.5V
current_initial=0;
[t, Vout] = ralston(R, L, Vin, current_initial, step, data_points*step);
plot(t, Vout);
% Signal 3
T(1) = 20e-6; % 20us
T(2) = 450e-6; % 450us
T(3) = 1000e-6;% 1000us
for j=1:3
f = 1/T(j);
Vin = @(t) sin(2*pi*f*t);
[t, Vout] = ralston(R, L, Vin, current_initial, step, data_points*step);
plot(t, Vout);
Vin = @(t) sawtooth(2*pi*f*t);
[t, Vout] = ralston(R, L, Vin, current_initial, step, data_points*step);
plot(t, Vout);
Vin = @(t) square(2*pi*f*t);
[t, Vout] = ralston(R, L, Vin, current_initial, step, data_points*step);
plot(t, Vout);
end
|