1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
|
module processor (sysclk, data_in, data_out, data_valid, SW, HEX0, HEX1, HEX2);
input sysclk; // system clock
input data_valid;
input [9:0] data_in; // 10-bit input data
input [8:0] SW;
output [9:0] data_out; // 10-bit output data
output [6:0] HEX0, HEX1, HEX2;
wire sysclk;
wire [9:0] data_in;
reg [9:0] data_out;
wire [9:0] x,y;
wire [8:0] RAM_out;
wire pulse;
wire [19:0] segnum;
wire [12:0] count_13;
wire [3:0] BCD_0, BCD_1, BCD_2, BCD_3, BCD_4;
parameter ADC_OFFSET = 10'h181;
parameter DAC_OFFSET = 10'h200;
assign x = data_in[9:0] - ADC_OFFSET; // x is input in 2's complement
assign y = x - {RAM_out[8],RAM_out[8:0]};
pulse_gen PULSE0 (pulse, data_valid, sysclk);
counter_13 COUNT13 (
.clock(~data_valid),
.enable(1'b0),
.count(count_13),
.reset(1'b1)
);
RAM DELAY1024 (
.clock(sysclk),
.data(y[9:1]),
.wren(pulse),
.rden(pulse),
.rdaddress(count_13),
.wraddress(count_13 + {SW[8:0],4'b0000}),
.q(RAM_out)
);
multiply_k MULTK (SW,segnum);
bin2bcd_16 BIN0 (segnum[19:10], BCD_0, BCD_1, BCD_2, BCD_3, BCD_4);
hex_to_7seg SEG0 (HEX0, BCD_0);
hex_to_7seg SEG1 (HEX1, BCD_1);
hex_to_7seg SEG2 (HEX2, BCD_2);
// Now clock y output with system clock
always @(posedge sysclk)
data_out <= y + DAC_OFFSET;
endmodule
|