diff options
author | Vasil Zlatanov <v@skozl.com> | 2019-03-04 16:59:31 +0000 |
---|---|---|
committer | Vasil Zlatanov <v@skozl.com> | 2019-03-04 16:59:31 +0000 |
commit | 06228fb5afde4180c697ce244b7465b7533d3cbc (patch) | |
tree | 46c3b2834c5fc6e08d3d9c51389fe3d2bb535cbb | |
parent | 5ffa17b2381aa1f298f9d9457bda09a2d9907a9b (diff) | |
download | e4-gan-06228fb5afde4180c697ce244b7465b7533d3cbc.tar.gz e4-gan-06228fb5afde4180c697ce244b7465b7533d3cbc.tar.bz2 e4-gan-06228fb5afde4180c697ce244b7465b7533d3cbc.zip |
Use tqdm in cgan
-rwxr-xr-x | cgan.py | 6 |
1 files changed, 2 insertions, 4 deletions
@@ -10,6 +10,7 @@ from keras.models import Sequential, Model from keras.optimizers import Adam import matplotlib.pyplot as plt from IPython.display import clear_output +from tqdm import tqdm import numpy as np @@ -122,7 +123,7 @@ class CGAN(): xaxis = np.arange(epochs) loss = np.zeros((2,epochs)) - for epoch in range(epochs): + for epoch in tqdm(range(epochs)): # --------------------- # Train Discriminator @@ -154,9 +155,6 @@ class CGAN(): # Plot the progress #print ("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100*d_loss[1], g_loss)) - if epoch % 500 == 0: - clear_output() - print(epoch) loss[0][epoch] = d_loss[0] loss[1][epoch] = g_loss |