aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authornunzip <np.scarh@gmail.com>2019-03-13 21:37:31 +0000
committernunzip <np.scarh@gmail.com>2019-03-13 21:37:31 +0000
commit4c4a8054033f5e3bacb1913adcc56ca09267ea9f (patch)
tree1ab29926ff552016f48bcaf98fa9e77a58aaa602
parent8e997dd9bf12ce35d6c56a9da1c85bd8ef2d0f8c (diff)
parent7d27d947d20ef28d3959cd358569f27bd0310111 (diff)
downloade4-gan-4c4a8054033f5e3bacb1913adcc56ca09267ea9f.tar.gz
e4-gan-4c4a8054033f5e3bacb1913adcc56ca09267ea9f.tar.bz2
e4-gan-4c4a8054033f5e3bacb1913adcc56ca09267ea9f.zip
Merge branch 'master' of skozl.com:e4-gan
-rwxr-xr-xcdcgan.py27
-rw-r--r--dcgan.py5
-rwxr-xr-xncdcgan.py265
3 files changed, 280 insertions, 17 deletions
diff --git a/cdcgan.py b/cdcgan.py
index 8d59a03..effc89b 100755
--- a/cdcgan.py
+++ b/cdcgan.py
@@ -7,7 +7,7 @@ from keras.datasets import mnist
from keras.layers import Input, Dense, Reshape, Flatten, Dropout, multiply
from keras.layers import BatchNormalization, Embedding, Activation, ZeroPadding2D
from keras.layers import LeakyReLU
-from keras.layers import UpSampling2D, Conv2D
+from keras.layers import UpSampling2D, Conv2D, Conv2DTranspose
from keras.models import Sequential, Model
from keras.optimizers import Adam
@@ -65,25 +65,22 @@ class CDCGAN():
model.add(Dense(128 * 7 * 7, activation="relu", input_dim=self.latent_dim))
model.add(Reshape((7, 7, 128)))
- model.add(UpSampling2D())
- for i in range(self.conv_layers):
- model.add(Conv2D(128, kernel_size=3, padding="same"))
- model.add(BatchNormalization())
- model.add(Activation("relu"))
-
- model.add(UpSampling2D())
+ model.add(Conv2DTranspose(256, kernel_size=3, padding="same", strides=(2,2)))
+ model.add(BatchNormalization())
+ model.add(Activation("relu"))
- for i in range(self.conv_layers):
- model.add(Conv2D(64, kernel_size=3, padding="same"))
- model.add(BatchNormalization())
+ model.add(Conv2DTranspose(128, kernel_size=3, padding="same", strides=(2,2)))
+ model.add(BatchNormalization())
+ model.add(Activation("relu"))
- model.add(Activation("relu"))
+ model.add(Conv2DTranspose(64, kernel_size=3, padding="same"))
+ model.add(BatchNormalization())
+ model.add(Activation("relu"))
- model.add(Conv2D(self.channels, kernel_size=3, padding="same"))
+ model.add(Conv2DTranspose(1, kernel_size=3, padding="same"))
model.add(Activation("tanh"))
- #model.summary()
noise = Input(shape=(self.latent_dim,))
label = Input(shape=(1,), dtype='int32')
@@ -91,6 +88,8 @@ class CDCGAN():
model_input = multiply([noise, label_embedding])
img = model(model_input)
+ #model.summary()
+
return Model([noise, label], img)
def build_discriminator(self):
diff --git a/dcgan.py b/dcgan.py
index 4317994..a362f69 100644
--- a/dcgan.py
+++ b/dcgan.py
@@ -1,4 +1,5 @@
from __future__ import print_function, division
+import tensorflow.keras as keras
from keras.datasets import mnist
from keras.layers import Input, Dense, Reshape, Flatten, Dropout
from keras.layers import BatchNormalization, Activation, ZeroPadding2D
@@ -76,7 +77,7 @@ class DCGAN():
model.add(Conv2D(self.channels, kernel_size=3, padding="same"))
model.add(Activation("tanh"))
- #model.summary()
+ model.summary()
noise = Input(shape=(self.latent_dim,))
img = model(noise)
@@ -191,8 +192,6 @@ class DCGAN():
fig.savefig("images/mnist_%d.png" % epoch)
plt.close()
-'''
if __name__ == '__main__':
dcgan = DCGAN()
dcgan.train(epochs=4000, batch_size=32, save_interval=50)
-'''
diff --git a/ncdcgan.py b/ncdcgan.py
new file mode 100755
index 0000000..ccb99d3
--- /dev/null
+++ b/ncdcgan.py
@@ -0,0 +1,265 @@
+from __future__ import print_function, division
+import tensorflow as keras
+
+import tensorflow as tf
+import tensorflow.keras as keras
+from keras.datasets import mnist
+from keras.layers import Input, Dense, Reshape, Flatten, Dropout, Multiply
+from keras.layers import BatchNormalization, Embedding, Activation, ZeroPadding2D
+from keras.layers import LeakyReLU
+from keras.layers import UpSampling2D, Conv2D, Conv2DTranspose
+from keras.models import Sequential, Model
+from keras.optimizers import Adam
+
+import matplotlib.pyplot as plt
+import matplotlib.gridspec as gridspec
+
+from tqdm import tqdm
+
+import sys
+
+import numpy as np
+
+class nCDCGAN():
+ def __init__(self, conv_layers = 1, num_classes = 10):
+ # Input shape
+ self.num_classes = num_classes
+ self.img_rows = 28
+ self.img_cols = 28
+ self.channels = 1
+ self.img_shape = (self.img_rows, self.img_cols, self.channels)
+ self.latent_dim = 100
+ self.conv_layers = conv_layers
+
+ optimizer = Adam(0.002, 0.5)
+
+ noise = Input(shape=(self.latent_dim,))
+ label = Input(shape=(1,))
+
+ # Build the generator
+ self.generator = self.build_generator(noise, label)
+
+ ph_img = Input(shape=self.img_shape)
+
+ # Build and compile the discriminator
+ self.discriminator = self.build_discriminator(ph_img, label)
+ self.discriminator.compile(loss='binary_crossentropy',
+ optimizer=optimizer,
+ metrics=['accuracy'])
+
+ img = self.generator([noise, label])
+
+
+
+ # For the combined model we will only train the generator
+ self.discriminator.trainable = False
+
+ # The discriminator takes generated images as input and determines validity
+ valid = self.discriminator([img, label])
+
+
+ # The combined model (stacked generator and discriminator)
+ # Trains generator to fool discriminator
+ self.combined = Model([noise, label], valid)
+ self.combined.compile(loss=['binary_crossentropy'],
+ optimizer=optimizer)
+
+
+ def build_generator(self, noise, con):
+
+ n_channel = 64
+ kernel_size = 3
+
+ con1 = Dense(n_channel, activation='tanh')(con) #model settings
+ con1 = Reshape((1,1,n_channel))(con1)
+ con1 = UpSampling2D((28,28))(con1)
+
+ hid = Dense(n_channel*7*7, activation='relu')(noise)
+ hid = Reshape((7,7,n_channel))(hid)
+
+ hid = Conv2DTranspose(n_channel, kernel_size=kernel_size, strides=2, padding="same")(hid)
+ hid = BatchNormalization(momentum=0.8)(hid)
+ hid = Activation("relu")(hid)
+
+ hid = Conv2DTranspose(n_channel, kernel_size=kernel_size, strides=2, padding="same")(hid)
+ hid = BatchNormalization(momentum=0.8)(hid)
+ hid = Activation("relu")(hid) # -> 128x144x144
+ hid = Multiply()([hid, con1])
+
+ hid = Conv2D(n_channel, kernel_size=kernel_size, strides=1, padding="same")(hid)
+ hid = BatchNormalization(momentum=0.8)(hid)
+ hid = Activation("relu")(hid) # -> 128x144x144
+ hid = Multiply()([hid, con1])
+
+ hid = Conv2D(n_channel, kernel_size=kernel_size, strides=1, padding="same")(hid)
+ hid = BatchNormalization(momentum=0.8)(hid)
+ hid = Activation("relu")(hid) # -> 128x144x144
+ hid = Multiply()([hid, con1])
+
+ hid = Conv2D(1, kernel_size=kernel_size, strides=1, padding="same")(hid)
+ out = Activation("tanh")(hid)
+
+ model = Model([noise, con], out)
+ model.summary()
+ return model
+
+
+ def build_discriminator(self, img, con):
+
+ n_channel = 64
+ kernel_size = 3
+
+ con1 = Dense(n_channel, activation='tanh')(con) #model settings
+ con1 = Reshape((1,1,n_channel))(con1)
+ con1 = UpSampling2D((28,28))(con1)
+
+
+ hid = Conv2D(n_channel, kernel_size=kernel_size, strides=1, padding="same")(img)
+ hid = BatchNormalization(momentum=0.8)(hid)
+ hid = LeakyReLU(alpha=0.2)(hid) # -> 32
+ hid = Multiply()([hid, con1]) # -> 128x128xn_channel
+
+ hid = Conv2D(n_channel, kernel_size=kernel_size, strides=1, padding="same")(hid)
+ hid = BatchNormalization(momentum=0.8)(hid)
+ hid = LeakyReLU(alpha=0.2)(hid) # -> 32
+ hid = Multiply()([hid, con1])
+
+ hid = Conv2D(n_channel, kernel_size=kernel_size, strides=1, padding="same")(hid)
+ hid = BatchNormalization(momentum=0.8)(hid)
+ hid = LeakyReLU(alpha=0.2)(hid) # -> 32
+ hid = Multiply()([hid, con1])
+
+
+ hid = Conv2D(n_channel, kernel_size=kernel_size, strides=2, padding="same")(hid)
+ hid = BatchNormalization(momentum=0.8)(hid)
+ hid = LeakyReLU(alpha=0.2)(hid) # -> 64
+
+ hid = Conv2D(n_channel, kernel_size=kernel_size, strides=2, padding="same")(hid)
+ hid = BatchNormalization(momentum=0.8)(hid)
+ hid = LeakyReLU(alpha=0.2)(hid) # -> 32
+
+ hid = Flatten()(hid)
+
+ hid = Dropout(0.1)(hid)
+
+ out = Dense(1, activation='sigmoid')(hid)
+
+ model = Model(inputs=[img, con], outputs=out)
+ model.summary()
+ return model
+
+ def train(self, epochs, batch_size=128, sample_interval=50, graph=False, smooth_real=1, smooth_fake=0):
+
+ # Load the dataset
+ (X_train, y_train), (_, _) = mnist.load_data()
+
+ # Configure input
+ X_train = (X_train.astype(np.float32) - 127.5) / 127.5
+ X_train = np.expand_dims(X_train, axis=3)
+ y_train = y_train.reshape(-1, 1)
+
+ # Adversarial ground truths
+ valid = np.ones((batch_size, 1))
+ fake = np.zeros((batch_size, 1))
+
+ xaxis = np.arange(epochs)
+ loss = np.zeros((2,epochs))
+ for epoch in tqdm(range(epochs)):
+
+ # ---------------------
+ # Train Discriminator
+ # ---------------------
+
+ # Select a random half batch of images
+ idx = np.random.randint(0, X_train.shape[0], batch_size)
+ imgs, labels = X_train[idx], y_train[idx]
+
+ # Sample noise as generator input
+ noise = np.random.normal(0, 1, (batch_size, 100))
+
+ # Generate a half batch of new images
+ gen_imgs = self.generator.predict([noise, labels])
+
+ # Train the discriminator
+ d_loss_real = self.discriminator.train_on_batch([imgs, labels], valid*smooth_real)
+ d_loss_fake = self.discriminator.train_on_batch([gen_imgs, labels], valid*smooth_fake)
+ d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
+
+ # ---------------------
+ # Train Generator
+ # ---------------------
+
+ # Condition on labels
+ sampled_labels = np.random.randint(0, 10, batch_size).reshape(-1, 1)
+ # Train the generator
+ g_loss = self.combined.train_on_batch([noise, sampled_labels], valid)
+
+ # Plot the progress
+ #print ("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100*d_loss[1], g_loss))
+ loss[0][epoch] = d_loss[0]
+ loss[1][epoch] = g_loss
+
+ # If at save interval => save generated image samples
+ if epoch % sample_interval == 0:
+ self.sample_images(epoch)
+
+ if graph:
+ plt.plot(xaxis,loss[0])
+ plt.plot(xaxis,loss[1])
+ plt.legend(('Discriminator', 'Generator'), loc='best')
+ plt.xlabel('Epoch')
+ plt.ylabel('Binary Crossentropy Loss')
+
+ def sample_images(self, epoch):
+ r, c = 2, 5
+ noise = np.random.normal(0, 1, (r * c, 100))
+ sampled_labels = np.arange(0, 10).reshape(-1, 1)
+
+ #using dummy_labels would just print zeros to help identify image quality
+ #dummy_labels = np.zeros(32).reshape(-1, 1)
+
+ gen_imgs = self.generator.predict([noise, sampled_labels])
+
+ # Rescale images 0 - 1
+ gen_imgs = 0.5 * gen_imgs + 0.5
+
+ fig, axs = plt.subplots(r, c)
+ cnt = 0
+ for i in range(r):
+ for j in range(c):
+ axs[i,j].imshow(gen_imgs[cnt,:,:,0], cmap='gray')
+ axs[i,j].set_title("Digit: %d" % sampled_labels[cnt])
+ axs[i,j].axis('off')
+ cnt += 1
+ fig.savefig("images/%d.png" % epoch)
+ plt.close()
+
+ def generate_data(self):
+ noise_train = np.random.normal(0, 1, (55000, 100))
+ noise_test = np.random.normal(0, 1, (10000, 100))
+ noise_val = np.random.normal(0, 1, (5000, 100))
+
+ labels_train = np.zeros(55000).reshape(-1, 1)
+ labels_test = np.zeros(10000).reshape(-1, 1)
+ labels_val = np.zeros(5000).reshape(-1, 1)
+
+ for i in range(10):
+ labels_train[i*5500:-1] = i
+ labels_test[i*1000:-1] = i
+ labels_val[i*500:-1] = i
+
+ train_data = self.generator.predict([noise_train, labels_train])
+ test_data = self.generator.predict([noise_test, labels_test])
+ val_data = self.generator.predict([noise_val, labels_val])
+
+ labels_train = keras.utils.to_categorical(labels_train, 10)
+ labels_test = keras.utils.to_categorical(labels_test, 10)
+ labels_val = keras.utils.to_categorical(labels_val, 10)
+
+ return train_data, test_data, val_data, labels_train, labels_test, labels_val
+
+'''
+if __name__ == '__main__':
+ cdcgan = nCDCGAN()
+ cdcgan.train(epochs=4000, batch_size=32)
+'''