diff options
| author | nunzip <np.scarh@gmail.com> | 2019-02-27 15:07:58 +0000 | 
|---|---|---|
| committer | nunzip <np.scarh@gmail.com> | 2019-02-27 15:07:58 +0000 | 
| commit | 589c0af3eadc6cf93dd51f1fc1e08e4a93e53e20 (patch) | |
| tree | f3c039e0dd4657e53a67aa0d1c62aeda4961cc47 | |
| parent | 8c8d668ef51cc8a7eb0f25e285c0841581213d5e (diff) | |
| download | e4-gan-589c0af3eadc6cf93dd51f1fc1e08e4a93e53e20.tar.gz e4-gan-589c0af3eadc6cf93dd51f1fc1e08e4a93e53e20.tar.bz2 e4-gan-589c0af3eadc6cf93dd51f1fc1e08e4a93e53e20.zip | |
Add updated gan classes
| -rw-r--r-- | cgan.py | 214 | ||||
| -rw-r--r-- | dcgan.py | 186 | 
2 files changed, 400 insertions, 0 deletions
| @@ -0,0 +1,214 @@ +from __future__ import print_function, division + +from keras.datasets import mnist +from keras.layers import Input, Dense, Reshape, Flatten, Dropout, multiply +from keras.layers import BatchNormalization, Activation, Embedding, ZeroPadding2D +from keras.layers.advanced_activations import LeakyReLU +from keras.layers.convolutional import UpSampling2D, Conv2D +from keras.models import Sequential, Model +from keras.optimizers import Adam +import matplotlib.pyplot as plt + +import numpy as np + +class CGAN(): +    def __init__(self): +        # Input shape +        self.img_rows = 28 +        self.img_cols = 28 +        self.channels = 1 +        self.img_shape = (self.img_rows, self.img_cols, self.channels) +        self.num_classes = 10 +        self.latent_dim = 100 + +        optimizer = Adam(0.0002, 0.5) + +        # Build and compile the discriminator +        self.discriminator = self.build_discriminator() +        self.discriminator.compile(loss=['binary_crossentropy'], +            optimizer=optimizer, +            metrics=['accuracy']) + +        # Build the generator +        self.generator = self.build_generator() + +        # The generator takes noise and the target label as input +        # and generates the corresponding digit of that label +        noise = Input(shape=(self.latent_dim,)) +        label = Input(shape=(1,)) +        img = self.generator([noise, label]) + +        # For the combined model we will only train the generator +        self.discriminator.trainable = False + +        # The discriminator takes generated image as input and determines validity +        # and the label of that image +        valid = self.discriminator([img, label]) + +        # The combined model  (stacked generator and discriminator) +        # Trains generator to fool discriminator +        self.combined = Model([noise, label], valid) +        self.combined.compile(loss=['binary_crossentropy'], +            optimizer=optimizer) + +    def build_generator(self): + +        model = Sequential() + +        model.add(Dense(256, input_dim=self.latent_dim)) +        model.add(LeakyReLU(alpha=0.2)) +        model.add(BatchNormalization(momentum=0.8)) +        model.add(Dense(512)) +        model.add(LeakyReLU(alpha=0.2)) +        model.add(BatchNormalization(momentum=0.8)) +        model.add(Dense(1024)) +        model.add(LeakyReLU(alpha=0.2)) +        model.add(BatchNormalization(momentum=0.8)) +        model.add(Dense(np.prod(self.img_shape), activation='tanh')) +        model.add(Reshape(self.img_shape)) + +        #model.summary() + +        noise = Input(shape=(self.latent_dim,)) +        label = Input(shape=(1,), dtype='int32') +        label_embedding = Flatten()(Embedding(self.num_classes, self.latent_dim)(label)) + +        model_input = multiply([noise, label_embedding]) +        img = model(model_input) + +        return Model([noise, label], img) + +    def build_discriminator(self): + +        model = Sequential() + +        model.add(Dense(512, input_dim=np.prod(self.img_shape))) +        model.add(LeakyReLU(alpha=0.2)) +        model.add(Dense(512)) +        model.add(LeakyReLU(alpha=0.2)) +        model.add(Dropout(0.4)) +        model.add(Dense(512)) +        model.add(LeakyReLU(alpha=0.2)) +        model.add(Dropout(0.4)) +        model.add(Dense(1, activation='sigmoid')) +         +        #model.summary() + +        img = Input(shape=self.img_shape) +        label = Input(shape=(1,), dtype='int32') + +        label_embedding = Flatten()(Embedding(self.num_classes, np.prod(self.img_shape))(label)) +        flat_img = Flatten()(img) + +        model_input = multiply([flat_img, label_embedding]) + +        validity = model(model_input) + +        return Model([img, label], validity) + +    def train(self, epochs, batch_size=128, sample_interval=50, graph=False): + +        # Load the dataset +        (X_train, y_train), (_, _) = mnist.load_data() + +        # Configure input +        X_train = (X_train.astype(np.float32) - 127.5) / 127.5 +        X_train = np.expand_dims(X_train, axis=3) +        y_train = y_train.reshape(-1, 1) + +        # Adversarial ground truths +        valid = np.ones((batch_size, 1)) +        fake = np.zeros((batch_size, 1)) +         +        xaxis = np.arange(epochs) +        loss = np.zeros((2,epochs)) +        for epoch in range(epochs): + +            # --------------------- +            #  Train Discriminator +            # --------------------- + +            # Select a random half batch of images +            idx = np.random.randint(0, X_train.shape[0], batch_size) +            imgs, labels = X_train[idx], y_train[idx] + +            # Sample noise as generator input +            noise = np.random.normal(0, 1, (batch_size, 100)) + +            # Generate a half batch of new images +            gen_imgs = self.generator.predict([noise, labels]) + +            # Train the discriminator +            d_loss_real = self.discriminator.train_on_batch([imgs, labels], valid) +            d_loss_fake = self.discriminator.train_on_batch([gen_imgs, labels], fake) +            d_loss = 0.5 * np.add(d_loss_real, d_loss_fake) + +            # --------------------- +            #  Train Generator +            # --------------------- + +            # Condition on labels +            sampled_labels = np.random.randint(0, 10, batch_size).reshape(-1, 1) +            # Train the generator +            g_loss = self.combined.train_on_batch([noise, sampled_labels], valid) + +            # Plot the progress +            #print ("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100*d_loss[1], g_loss)) +            if epoch % 500 == 0: +              print(epoch) +            loss[0][epoch] = d_loss[0] +            loss[1][epoch] = g_loss + +            # If at save interval => save generated image samples +            if epoch % sample_interval == 0: +                self.sample_images(epoch) +             +            if graph: +              plt.plot(xaxis,loss[0]) +              plt.plot(xaxis,loss[1]) +              plt.legend(('Discriminator', 'Generator'), loc='best') +              plt.xlabel('Epoch') +              plt.ylabel('Binary Crossentropy Loss') + +    def sample_images(self, epoch): +        r, c = 2, 5 +        noise = np.random.normal(0, 1, (r * c, 100)) +        sampled_labels = np.arange(0, 10).reshape(-1, 1) +        dummy_labels = np.zeros(32).reshape(-1, 1) +         +        gen_imgs = self.generator.predict([noise, dummy_labels]) + +        # Rescale images 0 - 1 +        gen_imgs = 0.5 * gen_imgs + 0.5 + +        fig, axs = plt.subplots(r, c) +        cnt = 0 +        for i in range(r): +            for j in range(c): +                axs[i,j].imshow(gen_imgs[cnt,:,:,0], cmap='gray') +                axs[i,j].set_title("Digit: %d" % sampled_labels[cnt]) +                axs[i,j].axis('off') +                cnt += 1 +        fig.savefig("images/%d.png" % epoch) +        plt.close() +         +    def generate_data(self): +      noise_train = np.random.normal(0, 1, (60000, 100)) +      noise_test = np.random.normal(0, 1, (10000, 100)) + +      gen_train = np.zeros(60000).reshape(-1, 1) +      gen_test = np.zeros(10000).reshape(-1, 1) +      for i in range(10): +        gen_train[i*600:] = i +        gen_test[i*100:] = i + +      return self.generator.predict([noise_train, gen_train]), self.generator.predict([noise_test, gen_test]), gen_train, gen_test + + +''' +if __name__ == '__main__': +    cgan = CGAN() +    cgan.train(epochs=7000, batch_size=32, sample_interval=200) +    train, test, tr_labels, te_labels = cgan.generate_data() +    print(train.shape, test.shape) +'''
\ No newline at end of file diff --git a/dcgan.py b/dcgan.py new file mode 100644 index 0000000..b48e99f --- /dev/null +++ b/dcgan.py @@ -0,0 +1,186 @@ +from __future__ import print_function, division +from keras.datasets import mnist +from keras.layers import Input, Dense, Reshape, Flatten, Dropout +from keras.layers import BatchNormalization, Activation, ZeroPadding2D +from keras.layers.advanced_activations import LeakyReLU +from keras.layers.convolutional import UpSampling2D, Conv2D +from keras.models import Sequential, Model +from keras.optimizers import Adam + +import matplotlib.pyplot as plt +import matplotlib.gridspec as gridspec + +import sys + +import numpy as np + +class DCGAN(): +    def __init__(self): +        # Input shape +        self.img_rows = 28 +        self.img_cols = 28 +        self.channels = 1 +        self.img_shape = (self.img_rows, self.img_cols, self.channels) +        self.latent_dim = 100 + +        optimizer = Adam(0.002, 0.5) + +        # Build and compile the discriminator +        self.discriminator = self.build_discriminator() +        self.discriminator.compile(loss='binary_crossentropy', +            optimizer=optimizer, +            metrics=['accuracy']) + +        # Build the generator +        self.generator = self.build_generator() + +        # The generator takes noise as input and generates imgs +        z = Input(shape=(self.latent_dim,)) +        img = self.generator(z) + +        # For the combined model we will only train the generator +        self.discriminator.trainable = False + +        # The discriminator takes generated images as input and determines validity +        valid = self.discriminator(img) + +        # The combined model  (stacked generator and discriminator) +        # Trains the generator to fool the discriminator +        self.combined = Model(z, valid) +        self.combined.compile(loss='binary_crossentropy', optimizer=optimizer) + +    def build_generator(self): + +        model = Sequential() + +        model.add(Dense(128 * 7 * 7, activation="relu", input_dim=self.latent_dim)) +        model.add(Reshape((7, 7, 128))) +        model.add(UpSampling2D()) +        model.add(Conv2D(128, kernel_size=3, padding="same")) +        model.add(BatchNormalization()) +        model.add(Activation("relu")) +        model.add(UpSampling2D()) +        model.add(Conv2D(64, kernel_size=3, padding="same")) +        model.add(BatchNormalization()) +        model.add(Activation("relu")) +        model.add(Conv2D(self.channels, kernel_size=3, padding="same")) +        model.add(Activation("tanh")) + +        #model.summary() + +        noise = Input(shape=(self.latent_dim,)) +        img = model(noise) + +        return Model(noise, img) + +    def build_discriminator(self): + +        model = Sequential() + +        model.add(Conv2D(32, kernel_size=3, strides=2, input_shape=self.img_shape, padding="same")) +        model.add(LeakyReLU(alpha=0.2)) +        model.add(Dropout(0.25)) +        model.add(Conv2D(64, kernel_size=3, strides=2, padding="same")) +        model.add(ZeroPadding2D(padding=((0,1),(0,1)))) +        model.add(BatchNormalization()) +        model.add(LeakyReLU(alpha=0.2)) +        model.add(Dropout(0.25)) +        model.add(Conv2D(128, kernel_size=3, strides=2, padding="same")) +        model.add(BatchNormalization()) +        model.add(LeakyReLU(alpha=0.2)) +        model.add(Dropout(0.25)) +        model.add(Conv2D(256, kernel_size=3, strides=1, padding="same")) +        model.add(BatchNormalization()) +        model.add(LeakyReLU(alpha=0.2)) +        model.add(Dropout(0.25)) +        model.add(Flatten()) +        model.add(Dense(1, activation='sigmoid')) + +        #model.summary() + +        img = Input(shape=self.img_shape) +        validity = model(img) + +        return Model(img, validity) + +    def train(self, epochs, batch_size=128, save_interval=50): + +        # Load the dataset +        (X_train, _), (_, _) = mnist.load_data() + +        # Rescale -1 to 1 +        X_train = X_train / 127.5 - 1. +        X_train = np.expand_dims(X_train, axis=3) + +        # Adversarial ground truths +        valid = np.ones((batch_size, 1)) +        fake = np.zeros((batch_size, 1)) +         +        xaxis = np.arange(epochs) +        loss = np.zeros((2,epochs)) +        for epoch in range(epochs): + +            # --------------------- +            #  Train Discriminator +            # --------------------- + +            # Select a random half of images +            idx = np.random.randint(0, X_train.shape[0], batch_size) +            imgs = X_train[idx] + +            # Sample noise and generate a batch of new images +            noise = np.random.normal(0, 1, (batch_size, self.latent_dim)) +            gen_imgs = self.generator.predict(noise) + +            # Train the discriminator (real classified as ones and generated as zeros) +            d_loss_real = self.discriminator.train_on_batch(imgs, valid) +            d_loss_fake = self.discriminator.train_on_batch(gen_imgs, fake) +            d_loss = 0.5 * np.add(d_loss_real, d_loss_fake) + +            # --------------------- +            #  Train Generator +            # --------------------- + +            # Train the generator (wants discriminator to mistake images as real) +            g_loss = self.combined.train_on_batch(noise, valid) + +            # Plot the progress +            #print ("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100*d_loss[1], g_loss)) +            if epoch % 500 == 0: +              print(epoch) +            loss[0][epoch] = d_loss[0] +            loss[1][epoch] = g_loss +            # If at save interval => save generated image samples +            if epoch % save_interval == 0: +                self.save_imgs(epoch) +        plt.plot(xaxis,loss[0]) +        plt.plot(xaxis,loss[1]) +        plt.legend(('Discriminator', 'Generator'), loc='best') +        plt.xlabel('Epoch') +        plt.ylabel('Binary Crossentropy Loss') + +    def save_imgs(self, epoch): +        r, c = 10, 10 +        noise = np.random.normal(0, 1, (r * c, self.latent_dim)) +        gen_imgs = self.generator.predict(noise) + +        # Rescale images 0 - 1 +        gen_imgs = 0.5 * gen_imgs + 0.5 + +        fig, axs = plt.subplots(r, c) +        gs = gridspec.GridSpec(r, c) +        gs.update(wspace=0.05, hspace=0.05) +        cnt = 0 +        for i in range(r): +            for j in range(c): +                axs[i,j].imshow(gen_imgs[cnt, :,:,0], cmap='gray') +                axs[i,j].axis('off') +                cnt += 1 +        fig.savefig("images/mnist_%d.png" % epoch) +        plt.close() + +''' +if __name__ == '__main__': +    dcgan = DCGAN() +    dcgan.train(epochs=4000, batch_size=32, save_interval=50) +'''
\ No newline at end of file | 
