diff options
| author | Vasil Zlatanov <v@skozl.com> | 2019-02-25 18:43:20 +0000 | 
|---|---|---|
| committer | Vasil Zlatanov <v@skozl.com> | 2019-02-25 18:43:20 +0000 | 
| commit | 69d462050a9a8514d48c8833400a42d8204c643c (patch) | |
| tree | 52380267091413e500851e1ce910f100708086e5 | |
| parent | 786ed447081dd0866ee54f6753a72eeeccc301b5 (diff) | |
| download | e4-gan-69d462050a9a8514d48c8833400a42d8204c643c.tar.gz e4-gan-69d462050a9a8514d48c8833400a42d8204c643c.tar.bz2 e4-gan-69d462050a9a8514d48c8833400a42d8204c643c.zip | |
Add basic models for DCGAN
| -rw-r--r-- | models.py | 37 | 
1 files changed, 37 insertions, 0 deletions
| diff --git a/models.py b/models.py new file mode 100644 index 0000000..5a28b27 --- /dev/null +++ b/models.py @@ -0,0 +1,37 @@ +# models.py +# EE4 Computer vision coursework: Models for GAN coursework  +from keras.models import Model, Sequential +from keras.layers import * + +def get_generator: +  generator = Sequential([ +          Dense(128*7*7, input_dim=100, activation=LeakyReLU(0.2)), +          BatchNormalization(), +          Reshape((7,7,128)), +          UpSampling2D(), +          Convolution2D(64, 5, 5, border_mode='same', activation=LeakyReLU(0.2)), +          BatchNormalization(), +          UpSampling2D(), +          Convolution2D(1, 5, 5, border_mode='same', activation='tanh') +      ]) +   +  discriminator = Sequential([ +          Convolution2D(64, 5, 5, subsample=(2,2), input_shape=(28,28,1), border_mode='same', activation=LeakyReLU(0.2)), +          Dropout(0.3), +          Convolution2D(128, 5, 5, subsample=(2,2), border_mode='same', activation=LeakyReLU(0.2)), +          Dropout(0.3), +          Flatten(), +          Dense(1, activation='sigmoid') +      ]) +  return generator + +def get_discriminator: +  discriminator = Sequential([ +          Convolution2D(64, 5, 5, subsample=(2,2), input_shape=(28,28,1), border_mode='same', activation=LeakyReLU(0.2)), +          Dropout(0.3), +          Convolution2D(128, 5, 5, subsample=(2,2), border_mode='same', activation=LeakyReLU(0.2)), +          Dropout(0.3), +          Flatten(), +          Dense(1, activation='sigmoid') +      ]) +  return discriminator | 
