diff options
author | nunzip <np.scarh@gmail.com> | 2019-03-13 17:25:54 +0000 |
---|---|---|
committer | nunzip <np.scarh@gmail.com> | 2019-03-13 17:25:54 +0000 |
commit | 79d666afdf6517ea15bfc9b882f7e4e77bff295b (patch) | |
tree | 180715aa4b35fc6297177ec58d7ecdd6af3c879f | |
parent | 672bdd094082d5be99b3149269a00f94875d0698 (diff) | |
download | e4-gan-79d666afdf6517ea15bfc9b882f7e4e77bff295b.tar.gz e4-gan-79d666afdf6517ea15bfc9b882f7e4e77bff295b.tar.bz2 e4-gan-79d666afdf6517ea15bfc9b882f7e4e77bff295b.zip |
Try GD
-rwxr-xr-x | cgan.py | 6 |
1 files changed, 5 insertions, 1 deletions
@@ -141,6 +141,7 @@ class CGAN(): gen_imgs = self.generator.predict([noise, labels]) # Train the discriminator + d_loss_real = self.discriminator.train_on_batch([imgs, labels], valid*smooth_real) d_loss_fake = self.discriminator.train_on_batch([gen_imgs, labels], valid*smooth_fake) d_loss = 0.5 * np.add(d_loss_real, d_loss_fake) @@ -152,7 +153,10 @@ class CGAN(): # Condition on labels sampled_labels = np.random.randint(0, 10, batch_size).reshape(-1, 1) # Train the generator - g_loss = self.combined.train_on_batch([noise, sampled_labels], valid) + if epoch % 3 == 0 + g_loss = self.combined.train_on_batch([noise, sampled_labels], valid) + else: + g_loss = 0 # Plot the progress #print ("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100*d_loss[1], g_loss)) |