aboutsummaryrefslogtreecommitdiff
path: root/cdcgan.py
diff options
context:
space:
mode:
authornunzip <np.scarh@gmail.com>2019-03-07 01:44:25 +0000
committernunzip <np.scarh@gmail.com>2019-03-07 01:44:25 +0000
commitc9958b93e9d2e2ea9b7e7556a02736835f905df4 (patch)
treec569735ddbd47d133b33941a3bc5eca0dd5c4333 /cdcgan.py
parent36629817fbdcc9e696e27f371ca2905ba6cb99aa (diff)
parentcb7f49832c7a90f689a20dcec546af7e1b576637 (diff)
downloade4-gan-c9958b93e9d2e2ea9b7e7556a02736835f905df4.tar.gz
e4-gan-c9958b93e9d2e2ea9b7e7556a02736835f905df4.tar.bz2
e4-gan-c9958b93e9d2e2ea9b7e7556a02736835f905df4.zip
Merge branch 'master' of skozl.com:e4-gan
Diffstat (limited to 'cdcgan.py')
-rwxr-xr-xcdcgan.py233
1 files changed, 233 insertions, 0 deletions
diff --git a/cdcgan.py b/cdcgan.py
new file mode 100755
index 0000000..aba3669
--- /dev/null
+++ b/cdcgan.py
@@ -0,0 +1,233 @@
+from __future__ import print_function, division
+import tensorflow.keras as keras
+import tensorflow as tf
+from keras.datasets import mnist
+
+import keras.layers as layers
+from keras.layers import Input, Dense, Reshape, Flatten, Dropout, multiply
+from keras.layers import BatchNormalization, Activation, Embedding, ZeroPadding2D
+from keras.layers.advanced_activations import LeakyReLU
+from keras.layers.convolutional import UpSampling2D, Conv2D
+from keras.models import Sequential, Model
+from keras.optimizers import Adam
+import matplotlib.pyplot as plt
+from IPython.display import clear_output
+from tqdm import tqdm
+
+import numpy as np
+
+class CDCGAN():
+ def __init__(self):
+ # Input shape
+ self.img_rows = 28
+ self.img_cols = 28
+ self.channels = 1
+ self.img_shape = (self.img_rows, self.img_cols, self.channels)
+ self.num_classes = 10
+ self.latent_dim = 100
+
+ optimizer = Adam(0.0002, 0.5)
+
+ # Build and compile the discriminator
+ self.discriminator = self.build_discriminator()
+
+ self.discriminator.compile(loss=['binary_crossentropy'],
+ optimizer=optimizer,
+ metrics=['accuracy'])
+
+ # Build the generator
+ self.generator = self.build_generator()
+
+ # The generator takes noise and the target label as input
+ # and generates the corresponding digit of that label
+ noise = Input(shape=(self.latent_dim,))
+ label = Input(shape=(1,))
+ img = self.generator([noise, label])
+
+ # For the combined model we will only train the generator
+ self.discriminator.trainable = False
+
+ # The discriminator takes generated image as input and determines validity
+ # and the label of that image
+ valid = self.discriminator([img, label])
+
+ # The combined model (stacked generator and discriminator)
+ # Trains generator to fool discriminator
+ self.combined = Model([noise, label], valid)
+ self.combined.compile(loss=['binary_crossentropy'],
+ optimizer=optimizer)
+
+ def build_generator(self):
+ # Prepare noise input
+ input_z = layers.Input((100,))
+ dense_z_1 = layers.Dense(1024)(input_z)
+ act_z_1 = layers.Activation("tanh")(dense_z_1)
+ dense_z_2 = layers.Dense(128 * 7 * 7)(act_z_1)
+ bn_z_1 = layers.BatchNormalization()(dense_z_2)
+ reshape_z = layers.Reshape((7, 7, 128), input_shape=(128 * 7 * 7,))(bn_z_1)
+
+ # Prepare Conditional (label) input
+ input_c = layers.Input((1,))
+ dense_c_1 = layers.Dense(1024)(input_c)
+ act_c_1 = layers.Activation("tanh")(dense_c_1)
+ dense_c_2 = layers.Dense(128 * 7 * 7)(act_c_1)
+ bn_c_1 = layers.BatchNormalization()(dense_c_2)
+ reshape_c = layers.Reshape((7, 7, 128), input_shape=(128 * 7 * 7,))(bn_c_1)
+
+ # Combine input source
+ concat_z_c = layers.Concatenate()([reshape_z, reshape_c])
+
+ # Image generation with the concatenated inputs
+ up_1 = layers.UpSampling2D(size=(2, 2))(concat_z_c)
+ conv_1 = layers.Conv2D(64, (5, 5), padding='same')(up_1)
+ act_1 = layers.Activation("tanh")(conv_1)
+ up_2 = layers.UpSampling2D(size=(2, 2))(act_1)
+ conv_2 = layers.Conv2D(1, (5, 5), padding='same')(up_2)
+ act_2 = layers.Activation("tanh")(conv_2)
+ model = Model(inputs=[input_z, input_c], outputs=act_2)
+ return model
+
+
+ def build_discriminator(self):
+ input_gen_image = layers.Input((28, 28, 1))
+ conv_1_image = layers.Conv2D(64, (5, 5), padding='same')(input_gen_image)
+ act_1_image = layers.Activation("tanh")(conv_1_image)
+ pool_1_image = layers.MaxPooling2D(pool_size=(2, 2))(act_1_image)
+ conv_2_image = layers.Conv2D(128, (5, 5))(pool_1_image)
+ act_2_image = layers.Activation("tanh")(conv_2_image)
+ pool_2_image = layers.MaxPooling2D(pool_size=(2, 2))(act_2_image)
+
+ input_c = layers.Input((1,))
+ dense_1_c = layers.Dense(1024)(input_c)
+ act_1_c = layers.Activation("tanh")(dense_1_c)
+ dense_2_c = layers.Dense(5 * 5 * 128)(act_1_c)
+ bn_c = layers.BatchNormalization()(dense_2_c)
+ reshaped_c = layers.Reshape((5, 5, 128))(bn_c)
+
+ concat = layers.Concatenate()([pool_2_image, reshaped_c])
+
+ flat = layers.Flatten()(concat)
+ dense_1 = layers.Dense(1024)(flat)
+ act_1 = layers.Activation("tanh")(dense_1)
+ dense_2 = layers.Dense(1)(act_1)
+ act_2 = layers.Activation('sigmoid')(dense_2)
+ model = Model(inputs=[input_gen_image, input_c], outputs=act_2)
+ return model
+
+ def train(self, epochs, batch_size=128, sample_interval=50, graph=False, smooth_real=1, smooth_fake=0):
+
+ # Load the dataset
+ (X_train, y_train), (_, _) = mnist.load_data()
+
+ # Configure input
+ X_train = (X_train.astype(np.float32) - 127.5) / 127.5
+ X_train = np.expand_dims(X_train, axis=3)
+ y_train = y_train.reshape(-1, 1)
+
+ # Adversarial ground truths
+ valid = np.ones((batch_size, 1))
+ fake = np.zeros((batch_size, 1))
+
+ xaxis = np.arange(epochs)
+ loss = np.zeros((2,epochs))
+ for epoch in tqdm(range(epochs)):
+
+ # ---------------------
+ # Train Discriminator
+ # ---------------------
+
+ # Select a random half batch of images
+ idx = np.random.randint(0, X_train.shape[0], batch_size)
+ imgs, labels = X_train[idx], y_train[idx]
+
+ # Sample noise as generator input
+ noise = np.random.normal(0, 1, (batch_size, 100))
+
+ # Generate a half batch of new images
+ gen_imgs = self.generator.predict([noise, labels])
+
+ # Train the discriminator
+ d_loss_real = self.discriminator.train_on_batch([imgs, labels], valid*smooth_real)
+ d_loss_fake = self.discriminator.train_on_batch([gen_imgs, labels], valid*smooth_fake)
+ d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
+
+ # ---------------------
+ # Train Generator
+ # ---------------------
+
+ # Condition on labels
+ sampled_labels = np.random.randint(0, 10, batch_size).reshape(-1, 1)
+ # Train the generator
+ g_loss = self.combined.train_on_batch([noise, sampled_labels], valid)
+
+ # Plot the progress
+ #print ("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100*d_loss[1], g_loss))
+ loss[0][epoch] = d_loss[0]
+ loss[1][epoch] = g_loss
+
+ # If at save interval => save generated image samples
+ if epoch % sample_interval == 0:
+ self.sample_images(epoch)
+
+ if graph:
+ plt.plot(xaxis,loss[0])
+ plt.plot(xaxis,loss[1])
+ plt.legend(('Discriminator', 'Generator'), loc='best')
+ plt.xlabel('Epoch')
+ plt.ylabel('Binary Crossentropy Loss')
+
+ def sample_images(self, epoch):
+ r, c = 2, 5
+ noise = np.random.normal(0, 1, (r * c, 100))
+ sampled_labels = np.arange(0, 10).reshape(-1, 1)
+
+ #using dummy_labels would just print zeros to help identify image quality
+ #dummy_labels = np.zeros(32).reshape(-1, 1)
+
+ gen_imgs = self.generator.predict([noise, sampled_labels])
+
+ # Rescale images 0 - 1
+ gen_imgs = 0.5 * gen_imgs + 0.5
+
+ fig, axs = plt.subplots(r, c)
+ cnt = 0
+ for i in range(r):
+ for j in range(c):
+ axs[i,j].imshow(gen_imgs[cnt,:,:,0], cmap='gray')
+ axs[i,j].set_title("Digit: %d" % sampled_labels[cnt])
+ axs[i,j].axis('off')
+ cnt += 1
+ fig.savefig("images/%d.png" % epoch)
+ plt.close()
+
+ def generate_data(self):
+ noise_train = np.random.normal(0, 1, (55000, 100))
+ noise_test = np.random.normal(0, 1, (10000, 100))
+ noise_val = np.random.normal(0, 1, (5000, 100))
+
+ labels_train = np.zeros(55000).reshape(-1, 1)
+ labels_test = np.zeros(10000).reshape(-1, 1)
+ labels_val = np.zeros(5000).reshape(-1, 1)
+
+ for i in range(10):
+ labels_train[i*5500:] = i
+ labels_test[i*1000:] = i
+ labels_val[i*500:] = i
+
+ train_data = self.generator.predict([noise_train, labels_train])
+ test_data = self.generator.predict([noise_test, labels_test])
+ val_data = self.generator.predict([noise_val, labels_val])
+
+ labels_train = keras.utils.to_categorical(labels_train, 10)
+ labels_test = keras.utils.to_categorical(labels_test, 10)
+ labels_val = keras.utils.to_categorical(labels_val, 10)
+
+ return train_data, test_data, val_data, labels_train, labels_test, labels_val
+
+'''
+if __name__ == '__main__':
+ cgan = CDCGAN()
+ cgan.train(epochs=70, batch_size=32, sample_interval=200)
+ train, test, tr_labels, te_labels = cgan.generate_data()
+ print(train.shape, test.shape)
+'''