diff options
| -rwxr-xr-x | cgan.py | 24 | 
1 files changed, 14 insertions, 10 deletions
| @@ -194,19 +194,23 @@ class CGAN():          fig.savefig("images/%d.png" % epoch)          plt.close() -    def generate_data(self): -      noise_train = np.random.normal(0, 1, (55000, 100)) -      noise_test = np.random.normal(0, 1, (10000, 100)) -      noise_val = np.random.normal(0, 1, (5000, 100)) +    def generate_data(self, split): +      train_size = int((55000*100/split)-55000) +      val_size = int(train_size/11) +      test_size = 2*val_size -      labels_train = np.zeros(55000).reshape(-1, 1) -      labels_test = np.zeros(10000).reshape(-1, 1) -      labels_val = np.zeros(5000).reshape(-1, 1) +      noise_train = np.random.normal(0, 1, (train_size, 100)) +      noise_test = np.random.normal(0, 1, (test_size, 100)) +      noise_val = np.random.normal(0, 1, (val_size, 100)) +      labels_train = np.zeros(train_size).reshape(-1, 1) +      labels_test = np.zeros(test_size).reshape(-1, 1) +      labels_val = np.zeros(val_size).reshape(-1, 1) +              for i in range(10): -        labels_train[i*5500:-1] = i -        labels_test[i*1000:-1] = i -        labels_val[i*500:-1] = i +        labels_train[i*int(train_size/10):-1] = i +        labels_test[i*int(test_size/10):-1] = i +        labels_val[i*int(val_size/10):-1] = i        train_data = self.generator.predict([noise_train, labels_train])        test_data = self.generator.predict([noise_test, labels_test]) | 
