diff options
| -rwxr-xr-x | ncdcgan.py | 11 | 
1 files changed, 7 insertions, 4 deletions
| @@ -148,7 +148,7 @@ class nCDCGAN():          model.summary()          return model -    def train(self, epochs, batch_size=128, sample_interval=50, graph=False, smooth_real=1, smooth_fake=0): +    def train(self, epochs, batch_size=128, sample_interval=50, graph=False, smooth_real=1, smooth_fake=0, gdbal = 1):          # Load the dataset          (X_train, y_train), (_, _) = mnist.load_data() @@ -181,9 +181,12 @@ class nCDCGAN():              gen_imgs = self.generator.predict([noise, labels])              # Train the discriminator -            d_loss_real = self.discriminator.train_on_batch([imgs, labels], valid*smooth_real) -            d_loss_fake = self.discriminator.train_on_batch([gen_imgs, labels], valid*smooth_fake) -            d_loss = 0.5 * np.add(d_loss_real, d_loss_fake) +            if epoch % gdbal == 0: +                d_loss_real = self.discriminator.train_on_batch([imgs, labels], valid*smooth_real) +                d_loss_fake = self.discriminator.train_on_batch([gen_imgs, labels], valid*smooth_fake) +                d_loss = 0.5 * np.add(d_loss_real, d_loss_fake) +            else: +                dloss = 0              # ---------------------              #  Train Generator | 
