1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
|
from __future__ import print_function, division
import tensorflow.keras as keras
import tensorflow as tf
from keras.datasets import mnist
from keras.layers import Input, Dense, Reshape, Flatten, Dropout, multiply
from keras.layers import BatchNormalization, Activation, Embedding, ZeroPadding2D
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.convolutional import UpSampling2D, Conv2D
from keras.models import Sequential, Model
from keras.optimizers import Adam
import matplotlib.pyplot as plt
from IPython.display import clear_output
from tqdm import tqdm
import numpy as np
class CGAN():
def __init__(self, dense_layers = 3, dropout=0.4):
# Input shape
self.img_rows = 28
self.img_cols = 28
self.channels = 1
self.img_shape = (self.img_rows, self.img_cols, self.channels)
self.num_classes = 10
self.latent_dim = 100
self.dense_layers = dense_layers
self.dropout = dropout
optimizer = Adam(0.0002, 0.5)
# Build and compile the discriminator
self.discriminator = self.build_discriminator()
self.discriminator.compile(loss=['binary_crossentropy'],
optimizer=optimizer,
metrics=['accuracy'])
# Build the generator
self.generator = self.build_generator()
# The generator takes noise and the target label as input
# and generates the corresponding digit of that label
noise = Input(shape=(self.latent_dim,))
label = Input(shape=(1,))
img = self.generator([noise, label])
# For the combined model we will only train the generator
self.discriminator.trainable = False
# The discriminator takes generated image as input and determines validity
# and the label of that image
valid = self.discriminator([img, label])
# The combined model (stacked generator and discriminator)
# Trains generator to fool discriminator
self.combined = Model([noise, label], valid)
self.combined.compile(loss=['binary_crossentropy'],
optimizer=optimizer)
def build_generator(self):
model = Sequential()
for i in range(self.dense_layers):
output_size = 2**(8+i)
model.add(Dense(output_size, input_dim=self.latent_dim))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(np.prod(self.img_shape), activation='tanh'))
model.add(Reshape(self.img_shape))
#model.summary()
noise = Input(shape=(self.latent_dim,))
label = Input(shape=(1,), dtype='int32')
label_embedding = Flatten()(Embedding(self.num_classes, self.latent_dim)(label))
model_input = multiply([noise, label_embedding])
img = model(model_input)
return Model([noise, label], img)
def build_discriminator(self):
model = Sequential()
model.add(Dense(512, input_dim=np.prod(self.img_shape)))
model.add(LeakyReLU(alpha=0.2))
model.add(Dense(512))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(self.dropout))
model.add(Dense(512))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(self.dropout))
model.add(Dense(1, activation='sigmoid'))
#model.summary()
img = Input(shape=self.img_shape)
label = Input(shape=(1,), dtype='int32')
label_embedding = Flatten()(Embedding(self.num_classes, np.prod(self.img_shape))(label))
flat_img = Flatten()(img)
model_input = multiply([flat_img, label_embedding])
validity = model(model_input)
return Model([img, label], validity)
def train(self, epochs, batch_size=128, sample_interval=50, graph=False, smooth_real=1, smooth_fake=0, gdstep=1):
# Load the dataset
(X_train, y_train), (_, _) = mnist.load_data()
# Configure input
X_train = (X_train.astype(np.float32) - 127.5) / 127.5
X_train = np.expand_dims(X_train, axis=3)
y_train = y_train.reshape(-1, 1)
# Adversarial ground truths
valid = np.ones((batch_size, 1))
fake = np.zeros((batch_size, 1))
xaxis = np.arange(epochs)
loss = np.zeros((2,epochs))
for epoch in tqdm(range(epochs)):
# ---------------------
# Train Discriminator
# ---------------------
# Select a random half batch of images
idx = np.random.randint(0, X_train.shape[0], batch_size)
imgs, labels = X_train[idx], y_train[idx]
# Sample noise as generator input
noise = np.random.normal(0, 1, (batch_size, 100))
# Generate a half batch of new images
gen_imgs = self.generator.predict([noise, labels])
# Train the discriminator
d_loss_real = self.discriminator.train_on_batch([imgs, labels], valid*smooth_real)
d_loss_fake = self.discriminator.train_on_batch([gen_imgs, labels], valid*smooth_fake)
d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
# ---------------------
# Train Generator
# ---------------------
# Condition on labels
sampled_labels = np.random.randint(0, 10, batch_size).reshape(-1, 1)
# Train the generator
if epoch % gdstep == 0:
g_loss = self.combined.train_on_batch([noise, sampled_labels], valid)
else:
g_loss = 0
# Plot the progress
#print ("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100*d_loss[1], g_loss))
loss[0][epoch] = d_loss[0]
loss[1][epoch] = g_loss
# If at save interval => save generated image samples
if epoch % sample_interval == 0:
self.sample_images(epoch)
if graph:
plt.plot(xaxis,loss[0])
plt.plot(xaxis,loss[1])
plt.legend(('Discriminator', 'Generator'), loc='best')
plt.xlabel('Epoch')
plt.ylabel('Binary Crossentropy Loss')
def sample_images(self, epoch):
r, c = 2, 5
noise = np.random.normal(0, 1, (r * c, 100))
sampled_labels = np.arange(0, 10).reshape(-1, 1)
#using dummy_labels would just print zeros to help identify image quality
#dummy_labels = np.zeros(32).reshape(-1, 1)
gen_imgs = self.generator.predict([noise, sampled_labels])
# Rescale images 0 - 1
gen_imgs = 0.5 * gen_imgs + 0.5
fig, axs = plt.subplots(r, c)
cnt = 0
for i in range(r):
for j in range(c):
axs[i,j].imshow(gen_imgs[cnt,:,:,0], cmap='gray')
axs[i,j].set_title("Digit: %d" % sampled_labels[cnt])
axs[i,j].axis('off')
cnt += 1
fig.savefig("images/%d.png" % epoch)
plt.close()
def generate_data(self, output_train = 55000):
# with this output_train you specify how much training data you want. the other two variables produce validation
# and testing data in proportions equal to the ones of MNIST dataset
val_size = int(output_train/11)
test_size = 2*val_size
noise_train = np.random.normal(0, 1, (output_train, 100))
noise_test = np.random.normal(0, 1, (test_size, 100))
noise_val = np.random.normal(0, 1, (val_size, 100))
labels_train = np.zeros(output_train).reshape(-1, 1)
labels_test = np.zeros(test_size).reshape(-1, 1)
labels_val = np.zeros(val_size).reshape(-1, 1)
for i in range(10):
labels_train[i*int(output_train/10):-1] = i
labels_test[i*int(test_size/10):-1] = i
labels_val[i*int(val_size/10):-1] = i
train_data = self.generator.predict([noise_train, labels_train])
test_data = self.generator.predict([noise_test, labels_test])
val_data = self.generator.predict([noise_val, labels_val])
labels_train = keras.utils.to_categorical(labels_train, 10)
labels_test = keras.utils.to_categorical(labels_test, 10)
labels_val = keras.utils.to_categorical(labels_val, 10)
return train_data, test_data, val_data, labels_train, labels_test, labels_val
'''
if __name__ == '__main__':
cgan = CGAN(dense_layers=1)
cgan.train(epochs=7000, batch_size=32, sample_interval=200)
train, test, tr_labels, te_labels = cgan.generate_data()
print(train.shape, test.shape)
'''
|