1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
|
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Model evaluation tools for TFGAN.
These methods come from https://arxiv.org/abs/1606.03498,
https://arxiv.org/abs/1706.08500, and https://arxiv.org/abs/1801.01401.
NOTE: This implementation uses the same weights as in
https://github.com/openai/improved-gan/blob/master/inception_score/model.py,
but is more numerically stable and is an unbiased estimator of the true
Inception score even when splitting the inputs into batches.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
import os
import sys
import tarfile
from six.moves import urllib
from tensorflow.contrib.layers.python.layers import layers
from tensorflow.core.framework import graph_pb2
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import importer
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import functional_ops
from tensorflow.python.ops import image_ops
from tensorflow.python.ops import linalg_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import nn_impl
from tensorflow.python.ops import nn_ops
from tensorflow.python.platform import gfile
from tensorflow.python.platform import resource_loader
__all__ = [
'get_graph_def_from_disk',
'get_graph_def_from_resource',
'get_graph_def_from_url_tarball',
'preprocess_image',
'run_image_classifier',
'run_inception',
'inception_score',
'classifier_score',
'classifier_score_from_logits',
'frechet_inception_distance',
'frechet_classifier_distance',
'frechet_classifier_distance_from_activations',
'mean_only_frechet_classifier_distance_from_activations',
'diagonal_only_frechet_classifier_distance_from_activations',
'kernel_inception_distance',
'kernel_inception_distance_and_std',
'kernel_classifier_distance',
'kernel_classifier_distance_and_std',
'kernel_classifier_distance_from_activations',
'kernel_classifier_distance_and_std_from_activations',
'INCEPTION_DEFAULT_IMAGE_SIZE',
]
INCEPTION_URL = 'http://download.tensorflow.org/models/frozen_inception_v1_2015_12_05.tar.gz'
INCEPTION_FROZEN_GRAPH = 'inceptionv1_for_inception_score.pb'
INCEPTION_INPUT = 'Mul:0'
INCEPTION_OUTPUT = 'logits:0'
INCEPTION_FINAL_POOL = 'pool_3:0'
INCEPTION_DEFAULT_IMAGE_SIZE = 299
def _validate_images(images, image_size):
images = ops.convert_to_tensor(images)
images.shape.with_rank(4)
images.shape.assert_is_compatible_with([None, image_size, image_size, None])
return images
def _symmetric_matrix_square_root(mat, eps=1e-10):
"""Compute square root of a symmetric matrix.
Note that this is different from an elementwise square root. We want to
compute M' where M' = sqrt(mat) such that M' * M' = mat.
Also note that this method **only** works for symmetric matrices.
Args:
mat: Matrix to take the square root of.
eps: Small epsilon such that any element less than eps will not be square
rooted to guard against numerical instability.
Returns:
Matrix square root of mat.
"""
# Unlike numpy, tensorflow's return order is (s, u, v)
s, u, v = linalg_ops.svd(mat)
# sqrt is unstable around 0, just use 0 in such case
si = array_ops.where(math_ops.less(s, eps), s, math_ops.sqrt(s))
# Note that the v returned by Tensorflow is v = V
# (when referencing the equation A = U S V^T)
# This is unlike Numpy which returns v = V^T
return math_ops.matmul(
math_ops.matmul(u, array_ops.diag(si)), v, transpose_b=True)
def preprocess_image(images,
height=INCEPTION_DEFAULT_IMAGE_SIZE,
width=INCEPTION_DEFAULT_IMAGE_SIZE,
scope=None):
"""Prepare a batch of images for evaluation.
This is the preprocessing portion of the graph from
http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz.
Note that it expects Tensors in [0, 255]. This function maps pixel values to
[-1, 1] and resizes to match the InceptionV1 network.
Args:
images: 3-D or 4-D Tensor of images. Values are in [0, 255].
height: Integer. Height of resized output image.
width: Integer. Width of resized output image.
scope: Optional scope for name_scope.
Returns:
3-D or 4-D float Tensor of prepared image(s). Values are in [-1, 1].
"""
is_single = images.shape.ndims == 3
with ops.name_scope(scope, 'preprocess', [images, height, width]):
if not images.dtype.is_floating:
images = math_ops.to_float(images)
if is_single:
images = array_ops.expand_dims(images, axis=0)
resized = image_ops.resize_bilinear(images, [height, width])
resized = (resized - 128.0) / 128.0
if is_single:
resized = array_ops.squeeze(resized, axis=0)
return resized
def _kl_divergence(p, p_logits, q):
"""Computes the Kullback-Liebler divergence between p and q.
This function uses p's logits in some places to improve numerical stability.
Specifically:
KL(p || q) = sum[ p * log(p / q) ]
= sum[ p * ( log(p) - log(q) ) ]
= sum[ p * ( log_softmax(p_logits) - log(q) ) ]
Args:
p: A 2-D floating-point Tensor p_ij, where `i` corresponds to the minibatch
example and `j` corresponds to the probability of being in class `j`.
p_logits: A 2-D floating-point Tensor corresponding to logits for `p`.
q: A 1-D floating-point Tensor, where q_j corresponds to the probability
of class `j`.
Returns:
KL divergence between two distributions. Output dimension is 1D, one entry
per distribution in `p`.
Raises:
ValueError: If any of the inputs aren't floating-point.
ValueError: If p or p_logits aren't 2D.
ValueError: If q isn't 1D.
"""
for tensor in [p, p_logits, q]:
if not tensor.dtype.is_floating:
raise ValueError('Input %s must be floating type.', tensor.name)
p.shape.assert_has_rank(2)
p_logits.shape.assert_has_rank(2)
q.shape.assert_has_rank(1)
return math_ops.reduce_sum(
p * (nn_ops.log_softmax(p_logits) - math_ops.log(q)), axis=1)
def get_graph_def_from_disk(filename):
"""Get a GraphDef proto from a disk location."""
with gfile.FastGFile(filename, 'rb') as f:
return graph_pb2.GraphDef.FromString(f.read())
def get_graph_def_from_resource(filename):
"""Get a GraphDef proto from within a .par file."""
return graph_pb2.GraphDef.FromString(resource_loader.load_resource(filename))
def get_graph_def_from_url_tarball(url, filename, tar_filename=None):
"""Get a GraphDef proto from a tarball on the web.
Args:
url: Web address of tarball
filename: Filename of graph definition within tarball
tar_filename: Temporary download filename (None = always download)
Returns:
A GraphDef loaded from a file in the downloaded tarball.
"""
if not (tar_filename and os.path.exists(tar_filename)):
def _progress(count, block_size, total_size):
sys.stdout.write('\r>> Downloading %s %.1f%%' %
(url,
float(count * block_size) / float(total_size) * 100.0))
sys.stdout.flush()
tar_filename, _ = urllib.request.urlretrieve(url, tar_filename, _progress)
with tarfile.open(tar_filename, 'r:gz') as tar:
proto_str = tar.extractfile(filename).read()
return graph_pb2.GraphDef.FromString(proto_str)
def _default_graph_def_fn():
return get_graph_def_from_url_tarball(INCEPTION_URL, INCEPTION_FROZEN_GRAPH,
os.path.basename(INCEPTION_URL))
def run_inception(images,
graph_def=None,
default_graph_def_fn=_default_graph_def_fn,
image_size=INCEPTION_DEFAULT_IMAGE_SIZE,
input_tensor=INCEPTION_INPUT,
output_tensor=INCEPTION_OUTPUT):
"""Run images through a pretrained Inception classifier.
Args:
images: Input tensors. Must be [batch, height, width, channels]. Input shape
and values must be in [-1, 1], which can be achieved using
`preprocess_image`.
graph_def: A GraphDef proto of a pretrained Inception graph. If `None`,
call `default_graph_def_fn` to get GraphDef.
default_graph_def_fn: A function that returns a GraphDef. Used if
`graph_def` is `None. By default, returns a pretrained InceptionV3 graph.
image_size: Required image width and height. See unit tests for the default
values.
input_tensor: Name of input Tensor.
output_tensor: Name or list of output Tensors. This function will compute
activations at the specified layer. Examples include INCEPTION_V3_OUTPUT
and INCEPTION_V3_FINAL_POOL which would result in this function computing
the final logits or the penultimate pooling layer.
Returns:
Tensor or Tensors corresponding to computed `output_tensor`.
Raises:
ValueError: If images are not the correct size.
ValueError: If neither `graph_def` nor `default_graph_def_fn` are provided.
"""
images = _validate_images(images, image_size)
if graph_def is None:
if default_graph_def_fn is None:
raise ValueError('If `graph_def` is `None`, must provide '
'`default_graph_def_fn`.')
graph_def = default_graph_def_fn()
activations = run_image_classifier(images, graph_def, input_tensor,
output_tensor)
if isinstance(activations, list):
for i, activation in enumerate(activations):
if array_ops.rank(activation) != 2:
activations[i] = layers.flatten(activation)
else:
if array_ops.rank(activations) != 2:
activations = layers.flatten(activations)
return activations
def run_image_classifier(tensor,
graph_def,
input_tensor,
output_tensor,
scope='RunClassifier'):
"""Runs a network from a frozen graph.
Args:
tensor: An Input tensor.
graph_def: A GraphDef proto.
input_tensor: Name of input tensor in graph def.
output_tensor: A tensor name or list of tensor names in graph def.
scope: Name scope for classifier.
Returns:
Classifier output if `output_tensor` is a string, or a list of outputs if
`output_tensor` is a list.
Raises:
ValueError: If `input_tensor` or `output_tensor` aren't in the graph_def.
"""
input_map = {input_tensor: tensor}
is_singleton = isinstance(output_tensor, str)
if is_singleton:
output_tensor = [output_tensor]
classifier_outputs = importer.import_graph_def(
graph_def, input_map, output_tensor, name=scope)
if is_singleton:
classifier_outputs = classifier_outputs[0]
return classifier_outputs
def classifier_score(images, classifier_fn, num_batches=1):
"""Classifier score for evaluating a conditional generative model.
This is based on the Inception Score, but for an arbitrary classifier.
This technique is described in detail in https://arxiv.org/abs/1606.03498. In
summary, this function calculates
exp( E[ KL(p(y|x) || p(y)) ] )
which captures how different the network's classification prediction is from
the prior distribution over classes.
NOTE: This function consumes images, computes their logits, and then
computes the classifier score. If you would like to precompute many logits for
large batches, use classifier_score_from_logits(), which this method also
uses.
Args:
images: Images to calculate the classifier score for.
classifier_fn: A function that takes images and produces logits based on a
classifier.
num_batches: Number of batches to split `generated_images` in to in order to
efficiently run them through the classifier network.
Returns:
The classifier score. A floating-point scalar of the same type as the output
of `classifier_fn`.
"""
generated_images_list = array_ops.split(
images, num_or_size_splits=num_batches)
# Compute the classifier splits using the memory-efficient `map_fn`.
logits = functional_ops.map_fn(
fn=classifier_fn,
elems=array_ops.stack(generated_images_list),
parallel_iterations=1,
back_prop=False,
swap_memory=True,
name='RunClassifier')
logits = array_ops.concat(array_ops.unstack(logits), 0)
return classifier_score_from_logits(logits)
def classifier_score_from_logits(logits):
"""Classifier score for evaluating a generative model from logits.
This method computes the classifier score for a set of logits. This can be
used independently of the classifier_score() method, especially in the case
of using large batches during evaluation where we would like precompute all
of the logits before computing the classifier score.
This technique is described in detail in https://arxiv.org/abs/1606.03498. In
summary, this function calculates:
exp( E[ KL(p(y|x) || p(y)) ] )
which captures how different the network's classification prediction is from
the prior distribution over classes.
Args:
logits: Precomputed 2D tensor of logits that will be used to
compute the classifier score.
Returns:
The classifier score. A floating-point scalar of the same type as the output
of `logits`.
"""
logits.shape.assert_has_rank(2)
# Use maximum precision for best results.
logits_dtype = logits.dtype
if logits_dtype != dtypes.float64:
logits = math_ops.to_double(logits)
p = nn_ops.softmax(logits)
q = math_ops.reduce_mean(p, axis=0)
kl = _kl_divergence(p, logits, q)
kl.shape.assert_has_rank(1)
log_score = math_ops.reduce_mean(kl)
final_score = math_ops.exp(log_score)
if logits_dtype != dtypes.float64:
final_score = math_ops.cast(final_score, logits_dtype)
return final_score
inception_score = functools.partial(
classifier_score,
classifier_fn=functools.partial(
run_inception, output_tensor=INCEPTION_OUTPUT))
def trace_sqrt_product(sigma, sigma_v):
"""Find the trace of the positive sqrt of product of covariance matrices.
'_symmetric_matrix_square_root' only works for symmetric matrices, so we
cannot just take _symmetric_matrix_square_root(sigma * sigma_v).
('sigma' and 'sigma_v' are symmetric, but their product is not necessarily).
Let sigma = A A so A = sqrt(sigma), and sigma_v = B B.
We want to find trace(sqrt(sigma sigma_v)) = trace(sqrt(A A B B))
Note the following properties:
(i) forall M1, M2: eigenvalues(M1 M2) = eigenvalues(M2 M1)
=> eigenvalues(A A B B) = eigenvalues (A B B A)
(ii) if M1 = sqrt(M2), then eigenvalues(M1) = sqrt(eigenvalues(M2))
=> eigenvalues(sqrt(sigma sigma_v)) = sqrt(eigenvalues(A B B A))
(iii) forall M: trace(M) = sum(eigenvalues(M))
=> trace(sqrt(sigma sigma_v)) = sum(eigenvalues(sqrt(sigma sigma_v)))
= sum(sqrt(eigenvalues(A B B A)))
= sum(eigenvalues(sqrt(A B B A)))
= trace(sqrt(A B B A))
= trace(sqrt(A sigma_v A))
A = sqrt(sigma). Both sigma and A sigma_v A are symmetric, so we **can**
use the _symmetric_matrix_square_root function to find the roots of these
matrices.
Args:
sigma: a square, symmetric, real, positive semi-definite covariance matrix
sigma_v: same as sigma
Returns:
The trace of the positive square root of sigma*sigma_v
"""
# Note sqrt_sigma is called "A" in the proof above
sqrt_sigma = _symmetric_matrix_square_root(sigma)
# This is sqrt(A sigma_v A) above
sqrt_a_sigmav_a = math_ops.matmul(sqrt_sigma,
math_ops.matmul(sigma_v, sqrt_sigma))
return math_ops.trace(_symmetric_matrix_square_root(sqrt_a_sigmav_a))
def frechet_classifier_distance(real_images,
generated_images,
classifier_fn,
num_batches=1):
"""Classifier distance for evaluating a generative model.
This is based on the Frechet Inception distance, but for an arbitrary
classifier.
This technique is described in detail in https://arxiv.org/abs/1706.08500.
Given two Gaussian distribution with means m and m_w and covariance matrices
C and C_w, this function calculates
|m - m_w|^2 + Tr(C + C_w - 2(C * C_w)^(1/2))
which captures how different the distributions of real images and generated
images (or more accurately, their visual features) are. Note that unlike the
Inception score, this is a true distance and utilizes information about real
world images.
Note that when computed using sample means and sample covariance matrices,
Frechet distance is biased. It is more biased for small sample sizes. (e.g.
even if the two distributions are the same, for a small sample size, the
expected Frechet distance is large). It is important to use the same
sample size to compute Frechet classifier distance when comparing two
generative models.
NOTE: This function consumes images, computes their activations, and then
computes the classifier score. If you would like to precompute many
activations for real and generated images for large batches, please use
frechet_clasifier_distance_from_activations(), which this method also uses.
Args:
real_images: Real images to use to compute Frechet Inception distance.
generated_images: Generated images to use to compute Frechet Inception
distance.
classifier_fn: A function that takes images and produces activations
based on a classifier.
num_batches: Number of batches to split images in to in order to
efficiently run them through the classifier network.
Returns:
The Frechet Inception distance. A floating-point scalar of the same type
as the output of `classifier_fn`.
"""
real_images_list = array_ops.split(
real_images, num_or_size_splits=num_batches)
generated_images_list = array_ops.split(
generated_images, num_or_size_splits=num_batches)
real_imgs = array_ops.stack(real_images_list)
generated_imgs = array_ops.stack(generated_images_list)
# Compute the activations using the memory-efficient `map_fn`.
def compute_activations(elems):
return functional_ops.map_fn(fn=classifier_fn,
elems=elems,
parallel_iterations=1,
back_prop=False,
swap_memory=True,
name='RunClassifier')
real_a = compute_activations(real_imgs)
gen_a = compute_activations(generated_imgs)
# Ensure the activations have the right shapes.
real_a = array_ops.concat(array_ops.unstack(real_a), 0)
gen_a = array_ops.concat(array_ops.unstack(gen_a), 0)
return frechet_classifier_distance_from_activations(real_a, gen_a)
def mean_only_frechet_classifier_distance_from_activations(
real_activations, generated_activations):
"""Classifier distance for evaluating a generative model from activations.
Given two Gaussian distribution with means m and m_w and covariance matrices
C and C_w, this function calcuates
|m - m_w|^2
which captures how different the distributions of real images and generated
images (or more accurately, their visual features) are. Note that unlike the
Inception score, this is a true distance and utilizes information about real
world images.
Note that when computed using sample means and sample covariance matrices,
Frechet distance is biased. It is more biased for small sample sizes. (e.g.
even if the two distributions are the same, for a small sample size, the
expected Frechet distance is large). It is important to use the same
sample size to compute frechet classifier distance when comparing two
generative models.
In this variant, we only compute the difference between the means of the
fitted Gaussians. The computation leads to O(n) vs. O(n^2) memory usage, yet
still retains much of the same information as FID.
Args:
real_activations: 2D array of activations of real images of size
[num_images, num_dims] to use to compute Frechet Inception distance.
generated_activations: 2D array of activations of generated images of size
[num_images, num_dims] to use to compute Frechet Inception distance.
Returns:
The mean-only Frechet Inception distance. A floating-point scalar of the
same type as the output of the activations.
"""
real_activations.shape.assert_has_rank(2)
generated_activations.shape.assert_has_rank(2)
activations_dtype = real_activations.dtype
if activations_dtype != dtypes.float64:
real_activations = math_ops.to_double(real_activations)
generated_activations = math_ops.to_double(generated_activations)
# Compute means of activations.
m = math_ops.reduce_mean(real_activations, 0)
m_w = math_ops.reduce_mean(generated_activations, 0)
# Next the distance between means.
mean = math_ops.reduce_sum(
math_ops.squared_difference(m, m_w)) # Equivalent to L2 but more stable.
mofid = mean
if activations_dtype != dtypes.float64:
mofid = math_ops.cast(mofid, activations_dtype)
return mofid
def diagonal_only_frechet_classifier_distance_from_activations(
real_activations, generated_activations):
"""Classifier distance for evaluating a generative model.
This is based on the Frechet Inception distance, but for an arbitrary
classifier.
This technique is described in detail in https://arxiv.org/abs/1706.08500.
Given two Gaussian distribution with means m and m_w and covariance matrices
C and C_w, this function calcuates
|m - m_w|^2 + (sigma + sigma_w - 2(sigma x sigma_w)^(1/2))
which captures how different the distributions of real images and generated
images (or more accurately, their visual features) are. Note that unlike the
Inception score, this is a true distance and utilizes information about real
world images. In this variant, we compute diagonal-only covariance matrices.
As a result, instead of computing an expensive matrix square root, we can do
something much simpler, and has O(n) vs O(n^2) space complexity.
Note that when computed using sample means and sample covariance matrices,
Frechet distance is biased. It is more biased for small sample sizes. (e.g.
even if the two distributions are the same, for a small sample size, the
expected Frechet distance is large). It is important to use the same
sample size to compute frechet classifier distance when comparing two
generative models.
Args:
real_activations: Real images to use to compute Frechet Inception distance.
generated_activations: Generated images to use to compute Frechet Inception
distance.
Returns:
The diagonal-only Frechet Inception distance. A floating-point scalar of
the same type as the output of the activations.
Raises:
ValueError: If the shape of the variance and mean vectors are not equal.
"""
real_activations.shape.assert_has_rank(2)
generated_activations.shape.assert_has_rank(2)
activations_dtype = real_activations.dtype
if activations_dtype != dtypes.float64:
real_activations = math_ops.to_double(real_activations)
generated_activations = math_ops.to_double(generated_activations)
# Compute mean and covariance matrices of activations.
m, var = nn_impl.moments(real_activations, axes=[0])
m_w, var_w = nn_impl.moments(generated_activations, axes=[0])
actual_shape = var.get_shape()
expected_shape = m.get_shape()
if actual_shape != expected_shape:
raise ValueError('shape: {} must match expected shape: {}'.format(
actual_shape, expected_shape))
# Compute the two components of FID.
# First the covariance component.
# Here, note that trace(A + B) = trace(A) + trace(B)
trace = math_ops.reduce_sum(
(var + var_w) - 2.0 * math_ops.sqrt(math_ops.multiply(var, var_w)))
# Next the distance between means.
mean = math_ops.reduce_sum(
math_ops.squared_difference(m, m_w)) # Equivalent to L2 but more stable.
dofid = trace + mean
if activations_dtype != dtypes.float64:
dofid = math_ops.cast(dofid, activations_dtype)
return dofid
def frechet_classifier_distance_from_activations(real_activations,
generated_activations):
"""Classifier distance for evaluating a generative model.
This methods computes the Frechet classifier distance from activations of
real images and generated images. This can be used independently of the
frechet_classifier_distance() method, especially in the case of using large
batches during evaluation where we would like precompute all of the
activations before computing the classifier distance.
This technique is described in detail in https://arxiv.org/abs/1706.08500.
Given two Gaussian distribution with means m and m_w and covariance matrices
C and C_w, this function calculates
|m - m_w|^2 + Tr(C + C_w - 2(C * C_w)^(1/2))
which captures how different the distributions of real images and generated
images (or more accurately, their visual features) are. Note that unlike the
Inception score, this is a true distance and utilizes information about real
world images.
Note that when computed using sample means and sample covariance matrices,
Frechet distance is biased. It is more biased for small sample sizes. (e.g.
even if the two distributions are the same, for a small sample size, the
expected Frechet distance is large). It is important to use the same
sample size to compute frechet classifier distance when comparing two
generative models.
Args:
real_activations: 2D Tensor containing activations of real data. Shape is
[batch_size, activation_size].
generated_activations: 2D Tensor containing activations of generated data.
Shape is [batch_size, activation_size].
Returns:
The Frechet Inception distance. A floating-point scalar of the same type
as the output of the activations.
"""
real_activations.shape.assert_has_rank(2)
generated_activations.shape.assert_has_rank(2)
activations_dtype = real_activations.dtype
if activations_dtype != dtypes.float64:
real_activations = math_ops.to_double(real_activations)
generated_activations = math_ops.to_double(generated_activations)
# Compute mean and covariance matrices of activations.
m = math_ops.reduce_mean(real_activations, 0)
m_w = math_ops.reduce_mean(generated_activations, 0)
num_examples_real = math_ops.to_double(array_ops.shape(real_activations)[0])
num_examples_generated = math_ops.to_double(
array_ops.shape(generated_activations)[0])
# sigma = (1 / (n - 1)) * (X - mu) (X - mu)^T
real_centered = real_activations - m
sigma = math_ops.matmul(
real_centered, real_centered, transpose_a=True) / (
num_examples_real - 1)
gen_centered = generated_activations - m_w
sigma_w = math_ops.matmul(
gen_centered, gen_centered, transpose_a=True) / (
num_examples_generated - 1)
# Find the Tr(sqrt(sigma sigma_w)) component of FID
sqrt_trace_component = trace_sqrt_product(sigma, sigma_w)
# Compute the two components of FID.
# First the covariance component.
# Here, note that trace(A + B) = trace(A) + trace(B)
trace = math_ops.trace(sigma + sigma_w) - 2.0 * sqrt_trace_component
# Next the distance between means.
mean = math_ops.reduce_sum(
math_ops.squared_difference(m, m_w)) # Equivalent to L2 but more stable.
fid = trace + mean
if activations_dtype != dtypes.float64:
fid = math_ops.cast(fid, activations_dtype)
return fid
frechet_inception_distance = functools.partial(
frechet_classifier_distance,
classifier_fn=functools.partial(
run_inception, output_tensor=INCEPTION_FINAL_POOL))
def kernel_classifier_distance(real_images,
generated_images,
classifier_fn,
num_classifier_batches=1,
max_block_size=1024,
dtype=None):
"""Kernel "classifier" distance for evaluating a generative model.
This is based on the Kernel Inception distance, but for an arbitrary
embedding.
This technique is described in detail in https://arxiv.org/abs/1801.01401.
Given two distributions P and Q of activations, this function calculates
E_{X, X' ~ P}[k(X, X')] + E_{Y, Y' ~ Q}[k(Y, Y')]
- 2 E_{X ~ P, Y ~ Q}[k(X, Y)]
where k is the polynomial kernel
k(x, y) = ( x^T y / dimension + 1 )^3.
This captures how different the distributions of real and generated images'
visual features are. Like the Frechet distance (and unlike the Inception
score), this is a true distance and incorporates information about the
target images. Unlike the Frechet score, this function computes an
*unbiased* and asymptotically normal estimator, which makes comparing
estimates across models much more intuitive.
The estimator used takes time quadratic in max_block_size. Larger values of
max_block_size will decrease the variance of the estimator but increase the
computational cost. This differs slightly from the estimator used by the
original paper; it is the block estimator of https://arxiv.org/abs/1307.1954.
NOTE: the blocking code assumes that real_activations and
generated_activations are both in random order. If either is sorted in a
meaningful order, the estimator will behave poorly.
NOTE: This function consumes images, computes their activations, and then
computes the classifier score. If you would like to precompute many
activations for real and generated images for large batches, or to compute
multiple scores based on the same images, please use
kernel_clasifier_distance_from_activations(), which this method also uses.
Args:
real_images: Real images to use to compute Kernel Inception distance.
generated_images: Generated images to use to compute Kernel Inception
distance.
classifier_fn: A function that takes images and produces activations based
on a classifier.
num_classifier_batches: Number of batches to split images in to in order to
efficiently run them through the classifier network.
max_estimator_block_size: integer, default 1024. The distance estimator
splits samples into blocks for computational efficiency. Larger values are
more computationally expensive but decrease the variance of the distance
estimate.
dtype: if not None, coerce activations to this dtype before computations.
Returns:
The Kernel Inception Distance. A floating-point scalar of the same type
as the output of the activations.
"""
return kernel_classifier_distance_and_std(
real_images,
generated_images,
classifier_fn,
num_classifier_batches=num_classifier_batches,
max_block_size=max_block_size,
dtype=dtype)[0]
kernel_inception_distance = functools.partial(
kernel_classifier_distance,
classifier_fn=functools.partial(
run_inception, output_tensor=INCEPTION_FINAL_POOL))
def kernel_classifier_distance_and_std(real_images,
generated_images,
classifier_fn,
num_classifier_batches=1,
max_block_size=1024,
dtype=None):
"""Kernel "classifier" distance for evaluating a generative model.
This is based on the Kernel Inception distance, but for an arbitrary
embedding. Also returns an estimate of the standard error of the distance
estimator.
This technique is described in detail in https://arxiv.org/abs/1801.01401.
Given two distributions P and Q of activations, this function calculates
E_{X, X' ~ P}[k(X, X')] + E_{Y, Y' ~ Q}[k(Y, Y')]
- 2 E_{X ~ P, Y ~ Q}[k(X, Y)]
where k is the polynomial kernel
k(x, y) = ( x^T y / dimension + 1 )^3.
This captures how different the distributions of real and generated images'
visual features are. Like the Frechet distance (and unlike the Inception
score), this is a true distance and incorporates information about the
target images. Unlike the Frechet score, this function computes an
*unbiased* and asymptotically normal estimator, which makes comparing
estimates across models much more intuitive.
The estimator used takes time quadratic in max_block_size. Larger values of
max_block_size will decrease the variance of the estimator but increase the
computational cost. This differs slightly from the estimator used by the
original paper; it is the block estimator of https://arxiv.org/abs/1307.1954.
NOTE: the blocking code assumes that real_activations and
generated_activations are both in random order. If either is sorted in a
meaningful order, the estimator will behave poorly.
NOTE: This function consumes images, computes their activations, and then
computes the classifier score. If you would like to precompute many
activations for real and generated images for large batches, or to compute
multiple scores based on the same images, please use
kernel_clasifier_distance_from_activations(), which this method also uses.
Args:
real_images: Real images to use to compute Kernel Inception distance.
generated_images: Generated images to use to compute Kernel Inception
distance.
classifier_fn: A function that takes images and produces activations based
on a classifier.
num_classifier_batches: Number of batches to split images in to in order to
efficiently run them through the classifier network.
max_estimator_block_size: integer, default 1024. The distance estimator
splits samples into blocks for computational efficiency. Larger values are
more computationally expensive but decrease the variance of the distance
estimate. Having a smaller block size also gives a better estimate of the
standard error.
dtype: if not None, coerce activations to this dtype before computations.
Returns:
The Kernel Inception Distance. A floating-point scalar of the same type
as the output of the activations.
An estimate of the standard error of the distance estimator (a scalar of
the same type).
"""
real_images_list = array_ops.split(
real_images, num_or_size_splits=num_classifier_batches)
generated_images_list = array_ops.split(
generated_images, num_or_size_splits=num_classifier_batches)
real_imgs = array_ops.stack(real_images_list)
generated_imgs = array_ops.stack(generated_images_list)
# Compute the activations using the memory-efficient `map_fn`.
def compute_activations(elems):
return functional_ops.map_fn(
fn=classifier_fn,
elems=elems,
parallel_iterations=1,
back_prop=False,
swap_memory=True,
name='RunClassifier')
real_a = compute_activations(real_imgs)
gen_a = compute_activations(generated_imgs)
# Ensure the activations have the right shapes.
real_a = array_ops.concat(array_ops.unstack(real_a), 0)
gen_a = array_ops.concat(array_ops.unstack(gen_a), 0)
return kernel_classifier_distance_and_std_from_activations(
real_a, gen_a, max_block_size=max_block_size)
kernel_inception_distance_and_std = functools.partial(
kernel_classifier_distance_and_std,
classifier_fn=functools.partial(
run_inception, output_tensor=INCEPTION_FINAL_POOL))
def kernel_classifier_distance_from_activations(real_activations,
generated_activations,
max_block_size=1024,
dtype=None):
"""Kernel "classifier" distance for evaluating a generative model.
This methods computes the kernel classifier distance from activations of
real images and generated images. This can be used independently of the
kernel_classifier_distance() method, especially in the case of using large
batches during evaluation where we would like to precompute all of the
activations before computing the classifier distance, or if we want to
compute multiple metrics based on the same images.
This technique is described in detail in https://arxiv.org/abs/1801.01401.
Given two distributions P and Q of activations, this function calculates
E_{X, X' ~ P}[k(X, X')] + E_{Y, Y' ~ Q}[k(Y, Y')]
- 2 E_{X ~ P, Y ~ Q}[k(X, Y)]
where k is the polynomial kernel
k(x, y) = ( x^T y / dimension + 1 )^3.
This captures how different the distributions of real and generated images'
visual features are. Like the Frechet distance (and unlike the Inception
score), this is a true distance and incorporates information about the
target images. Unlike the Frechet score, this function computes an
*unbiased* and asymptotically normal estimator, which makes comparing
estimates across models much more intuitive.
The estimator used takes time quadratic in max_block_size. Larger values of
max_block_size will decrease the variance of the estimator but increase the
computational cost. This differs slightly from the estimator used by the
original paper; it is the block estimator of https://arxiv.org/abs/1307.1954.
NOTE: the blocking code assumes that real_activations and
generated_activations are both in random order. If either is sorted in a
meaningful order, the estimator will behave poorly.
Args:
real_activations: 2D Tensor containing activations of real data. Shape is
[batch_size, activation_size].
generated_activations: 2D Tensor containing activations of generated data.
Shape is [batch_size, activation_size].
max_block_size: integer, default 1024. The distance estimator splits samples
into blocks for computational efficiency. Larger values are more
computationally expensive but decrease the variance of the distance
estimate.
dtype: if not None, coerce activations to this dtype before computations.
Returns:
The Kernel Inception Distance. A floating-point scalar of the same type
as the output of the activations.
"""
return kernel_classifier_distance_and_std_from_activations(
real_activations, generated_activations, max_block_size=max_block_size)[0]
def kernel_classifier_distance_and_std_from_activations(real_activations,
generated_activations,
max_block_size=1024,
dtype=None):
"""Kernel "classifier" distance for evaluating a generative model.
This methods computes the kernel classifier distance from activations of
real images and generated images. This can be used independently of the
kernel_classifier_distance() method, especially in the case of using large
batches during evaluation where we would like to precompute all of the
activations before computing the classifier distance, or if we want to
compute multiple metrics based on the same images. It also returns a rough
estimate of the standard error of the estimator.
This technique is described in detail in https://arxiv.org/abs/1801.01401.
Given two distributions P and Q of activations, this function calculates
E_{X, X' ~ P}[k(X, X')] + E_{Y, Y' ~ Q}[k(Y, Y')]
- 2 E_{X ~ P, Y ~ Q}[k(X, Y)]
where k is the polynomial kernel
k(x, y) = ( x^T y / dimension + 1 )^3.
This captures how different the distributions of real and generated images'
visual features are. Like the Frechet distance (and unlike the Inception
score), this is a true distance and incorporates information about the
target images. Unlike the Frechet score, this function computes an
*unbiased* and asymptotically normal estimator, which makes comparing
estimates across models much more intuitive.
The estimator used takes time quadratic in max_block_size. Larger values of
max_block_size will decrease the variance of the estimator but increase the
computational cost. This differs slightly from the estimator used by the
original paper; it is the block estimator of https://arxiv.org/abs/1307.1954.
The estimate of the standard error will also be more reliable when there are
more blocks, i.e. when max_block_size is smaller.
NOTE: the blocking code assumes that real_activations and
generated_activations are both in random order. If either is sorted in a
meaningful order, the estimator will behave poorly.
Args:
real_activations: 2D Tensor containing activations of real data. Shape is
[batch_size, activation_size].
generated_activations: 2D Tensor containing activations of generated data.
Shape is [batch_size, activation_size].
max_block_size: integer, default 1024. The distance estimator splits samples
into blocks for computational efficiency. Larger values are more
computationally expensive but decrease the variance of the distance
estimate. Having a smaller block size also gives a better estimate of the
standard error.
dtype: if not None, coerce activations to this dtype before computations.
Returns:
The Kernel Inception Distance. A floating-point scalar of the same type
as the output of the activations.
An estimate of the standard error of the distance estimator (a scalar of
the same type).
"""
real_activations.shape.assert_has_rank(2)
generated_activations.shape.assert_has_rank(2)
real_activations.shape[1].assert_is_compatible_with(
generated_activations.shape[1])
if dtype is None:
dtype = real_activations.dtype
assert generated_activations.dtype == dtype
else:
real_activations = math_ops.cast(real_activations, dtype)
generated_activations = math_ops.cast(generated_activations, dtype)
# Figure out how to split the activations into blocks of approximately
# equal size, with none larger than max_block_size.
n_r = array_ops.shape(real_activations)[0]
n_g = array_ops.shape(generated_activations)[0]
n_bigger = math_ops.maximum(n_r, n_g)
n_blocks = math_ops.to_int32(math_ops.ceil(n_bigger / max_block_size))
v_r = n_r // n_blocks
v_g = n_g // n_blocks
n_plusone_r = n_r - v_r * n_blocks
n_plusone_g = n_g - v_g * n_blocks
sizes_r = array_ops.concat([
array_ops.fill([n_blocks - n_plusone_r], v_r),
array_ops.fill([n_plusone_r], v_r + 1),
], 0)
sizes_g = array_ops.concat([
array_ops.fill([n_blocks - n_plusone_g], v_g),
array_ops.fill([n_plusone_g], v_g + 1),
], 0)
zero = array_ops.zeros([1], dtype=dtypes.int32)
inds_r = array_ops.concat([zero, math_ops.cumsum(sizes_r)], 0)
inds_g = array_ops.concat([zero, math_ops.cumsum(sizes_g)], 0)
dim = math_ops.cast(real_activations.shape[1], dtype)
def compute_kid_block(i):
'Compute the ith block of the KID estimate.'
r_s = inds_r[i]
r_e = inds_r[i + 1]
r = real_activations[r_s:r_e]
m = math_ops.cast(r_e - r_s, dtype)
g_s = inds_g[i]
g_e = inds_g[i + 1]
g = generated_activations[g_s:g_e]
n = math_ops.cast(g_e - g_s, dtype)
k_rr = (math_ops.matmul(r, r, transpose_b=True) / dim + 1)**3
k_rg = (math_ops.matmul(r, g, transpose_b=True) / dim + 1)**3
k_gg = (math_ops.matmul(g, g, transpose_b=True) / dim + 1)**3
return (-2 * math_ops.reduce_mean(k_rg) +
(math_ops.reduce_sum(k_rr) - math_ops.trace(k_rr)) / (m * (m - 1)) +
(math_ops.reduce_sum(k_gg) - math_ops.trace(k_gg)) / (n * (n - 1)))
ests = functional_ops.map_fn(
compute_kid_block, math_ops.range(n_blocks), dtype=dtype, back_prop=False)
mn = math_ops.reduce_mean(ests)
# nn_impl.moments doesn't use the Bessel correction, which we want here
n_blocks_ = math_ops.cast(n_blocks, dtype)
var = control_flow_ops.cond(
math_ops.less_equal(n_blocks, 1),
lambda: array_ops.constant(float('nan'), dtype=dtype),
lambda: math_ops.reduce_sum(math_ops.square(ests - mn)) / (n_blocks_ - 1))
return mn, math_ops.sqrt(var / n_blocks_)
|