aboutsummaryrefslogtreecommitdiff
path: root/ncdcgan.py
blob: a76d232b9e5ab91c4852c0a3b09bd8810bfb36e9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
from __future__ import print_function, division
import tensorflow as keras

import tensorflow as tf
import tensorflow.keras as keras
from keras.datasets import mnist
from keras.layers import Input, Dense, Reshape, Flatten, Dropout, Multiply
from keras.layers import BatchNormalization, Embedding, Activation, ZeroPadding2D
from keras.layers import LeakyReLU
from keras.layers import UpSampling2D, Conv2D, Conv2DTranspose
from keras.models import Sequential, Model
from keras.optimizers import Adam

import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec

from tqdm import tqdm

import sys

import numpy as np

class nCDCGAN():
    def __init__(self, conv_layers = 1, num_classes = 10):
        # Input shape
        self.num_classes = num_classes
        self.img_rows = 28
        self.img_cols = 28
        self.channels = 1
        self.img_shape = (self.img_rows, self.img_cols, self.channels)
        self.latent_dim = 100
        self.conv_layers = conv_layers

        optimizer = Adam(0.002, 0.5)

        noise = Input(shape=(self.latent_dim,))
        label = Input(shape=(1,))

        # Build the generator
        self.generator = self.build_generator(noise, label)

        ph_img = Input(shape=self.img_shape)

        # Build and compile the discriminator
        self.discriminator = self.build_discriminator(ph_img, label)
        self.discriminator.compile(loss='binary_crossentropy',
            optimizer=optimizer,
            metrics=['accuracy'])

        img = self.generator([noise, label])

        

        # For the combined model we will only train the generator
        self.discriminator.trainable = False

        # The discriminator takes generated images as input and determines validity
        valid = self.discriminator([img, label])


        # The combined model  (stacked generator and discriminator)
        # Trains generator to fool discriminator
        self.combined = Model([noise, label], valid)
        self.combined.compile(loss=['binary_crossentropy'],
            optimizer=optimizer)


    def build_generator(self, noise, con):

        n_channel = 64 
        kernel_size = 3

        con1 = Dense(n_channel, activation='tanh')(con) #model settings
        con1 = Reshape((1,1,n_channel))(con1)
        con1 = UpSampling2D((28,28))(con1)

        hid = Dense(n_channel*7*7, activation='relu')(noise)
        hid = Reshape((7,7,n_channel))(hid)

        hid = Conv2DTranspose(n_channel, kernel_size=kernel_size, strides=2, padding="same")(hid)
        hid = BatchNormalization(momentum=0.8)(hid)
        hid = Activation("relu")(hid)

        hid = Conv2DTranspose(n_channel, kernel_size=kernel_size, strides=2, padding="same")(hid)
        hid = BatchNormalization(momentum=0.8)(hid)
        hid = Activation("relu")(hid) # -> 128x144x144
        hid = Multiply()([hid, con1])

        hid = Conv2D(n_channel, kernel_size=kernel_size, strides=1, padding="same")(hid)
        hid = BatchNormalization(momentum=0.8)(hid)
        hid = Activation("relu")(hid) # -> 128x144x144
        hid = Multiply()([hid, con1])

        hid = Conv2D(n_channel, kernel_size=kernel_size, strides=1, padding="same")(hid)
        hid = BatchNormalization(momentum=0.8)(hid)
        hid = Activation("relu")(hid) # -> 128x144x144
        hid = Multiply()([hid, con1])

        hid = Conv2D(1, kernel_size=kernel_size, strides=1, padding="same")(hid)
        out = Activation("tanh")(hid)

        model =  Model([noise, con], out)
        model.summary()
        return model


    def build_discriminator(self, img, con):

        n_channel = 64 
        kernel_size = 3

        con1 = Dense(n_channel, activation='tanh')(con) #model settings
        con1 = Reshape((1,1,n_channel))(con1)
        con1 = UpSampling2D((28,28))(con1)


        hid = Conv2D(n_channel, kernel_size=kernel_size, strides=1, padding="same")(img)
        hid = BatchNormalization(momentum=0.8)(hid)
        hid = LeakyReLU(alpha=0.2)(hid) # -> 32
        hid = Multiply()([hid, con1]) # -> 128x128xn_channel

        hid = Conv2D(n_channel, kernel_size=kernel_size, strides=1, padding="same")(hid)
        hid = BatchNormalization(momentum=0.8)(hid)
        hid = LeakyReLU(alpha=0.2)(hid) # -> 32
        hid = Multiply()([hid, con1])

        hid = Conv2D(n_channel, kernel_size=kernel_size, strides=1, padding="same")(hid)
        hid = BatchNormalization(momentum=0.8)(hid)
        hid = LeakyReLU(alpha=0.2)(hid) # -> 32
        hid = Multiply()([hid, con1])


        hid = Conv2D(n_channel, kernel_size=kernel_size, strides=2, padding="same")(hid)
        hid = BatchNormalization(momentum=0.8)(hid)
        hid = LeakyReLU(alpha=0.2)(hid) # -> 64

        hid = Conv2D(n_channel, kernel_size=kernel_size, strides=2, padding="same")(hid)
        hid = BatchNormalization(momentum=0.8)(hid)
        hid = LeakyReLU(alpha=0.2)(hid) # -> 32

        hid = Flatten()(hid)

        hid = Dropout(0.1)(hid)

        out = Dense(1, activation='sigmoid')(hid)

        model = Model(inputs=[img, con], outputs=out)
        model.summary()
        return model

    def train(self, epochs, batch_size=128, sample_interval=50, graph=False, smooth_real=1, smooth_fake=0, gdbal = 1):

        # Load the dataset
        (X_train, y_train), (_, _) = mnist.load_data()

        # Configure input
        X_train = (X_train.astype(np.float32) - 127.5) / 127.5
        X_train = np.expand_dims(X_train, axis=3)
        y_train = y_train.reshape(-1, 1)

        # Adversarial ground truths
        valid = np.ones((batch_size, 1))
        fake = np.zeros((batch_size, 1))
        
        xaxis = np.arange(epochs)
        loss = np.zeros((2,epochs))
        for epoch in tqdm(range(epochs)):

            # ---------------------
            #  Train Discriminator
            # ---------------------

            # Select a random half batch of images
            idx = np.random.randint(0, X_train.shape[0], batch_size)
            imgs, labels = X_train[idx], y_train[idx]

            # Sample noise as generator input
            noise = np.random.normal(0, 1, (batch_size, 100))

            # Generate a half batch of new images
            gen_imgs = self.generator.predict([noise, labels])

            # Train the discriminator
            if epoch % gdbal == 0:
                d_loss_real = self.discriminator.train_on_batch([imgs, labels], valid*smooth_real)
                d_loss_fake = self.discriminator.train_on_batch([gen_imgs, labels], valid*smooth_fake)
                d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
            else:
                dloss = 0

            # ---------------------
            #  Train Generator
            # ---------------------

            # Condition on labels
            sampled_labels = np.random.randint(0, 10, batch_size).reshape(-1, 1)
            # Train the generator
            g_loss = self.combined.train_on_batch([noise, sampled_labels], valid)

            # Plot the progress
            #print ("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100*d_loss[1], g_loss))
            loss[0][epoch] = d_loss[0]
            loss[1][epoch] = g_loss

            # If at save interval => save generated image samples
            if epoch % sample_interval == 0:
                self.sample_images(epoch)
            
        if graph:
          plt.plot(xaxis,loss[0])
          plt.plot(xaxis,loss[1])
          plt.legend(('Discriminator', 'Generator'), loc='best')
          plt.xlabel('Epoch')
          plt.ylabel('Binary Crossentropy Loss')

    def sample_images(self, epoch):
        r, c = 2, 5
        noise = np.random.normal(0, 1, (r * c, 100))
        sampled_labels = np.arange(0, 10).reshape(-1, 1)

        #using dummy_labels would just print zeros to help identify image quality
        #dummy_labels = np.zeros(32).reshape(-1, 1)
        
        gen_imgs = self.generator.predict([noise, sampled_labels])

        # Rescale images 0 - 1
        gen_imgs = 0.5 * gen_imgs + 0.5

        fig, axs = plt.subplots(r, c)
        cnt = 0
        for i in range(r):
            for j in range(c):
                axs[i,j].imshow(gen_imgs[cnt,:,:,0], cmap='gray')
                axs[i,j].set_title("Digit: %d" % sampled_labels[cnt])
                axs[i,j].axis('off')
                cnt += 1
        fig.savefig("images/%d.png" % epoch)
        plt.close()
        
    def generate_data(self, out=55000):
      v_out = int(out/11)
      te_out = v_out*2
      noise_train = np.random.normal(0, 1, (out, 100))
      noise_test = np.random.normal(0, 1, (te_out, 100))
      noise_val = np.random.normal(0, 1, (v_out, 100))

      labels_train = np.zeros(out).reshape(-1, 1)
      labels_test = np.zeros(te_out).reshape(-1, 1)
      labels_val = np.zeros(v_out).reshape(-1, 1)

      for i in range(10):
        labels_train[i*int(out/10):-1] = i
        labels_test[i*int(te_out/10):-1] = i
        labels_val[i*int(v_out/10):-1] = i

      train_data = self.generator.predict([noise_train, labels_train])
      test_data = self.generator.predict([noise_test, labels_test])
      val_data = self.generator.predict([noise_val, labels_val])

      labels_train = keras.utils.to_categorical(labels_train, 10)
      labels_test = keras.utils.to_categorical(labels_test, 10)
      labels_val = keras.utils.to_categorical(labels_val, 10)

      return train_data, test_data, val_data, labels_train, labels_test, labels_val

'''
if __name__ == '__main__':
    cdcgan = nCDCGAN()
    cdcgan.train(epochs=4000, batch_size=32)
'''