aboutsummaryrefslogtreecommitdiff
path: root/report/paper.md
blob: f104cf0a597199f228f8bda785ce34a4a78c92c5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
# Introduction 

In this coursework we present two variants of the GAN architecture - DCGAN and CGAN, applied to the MNIST dataset and evaluate performance metrics across various optimisations techniques. The MNIST dataset contains 60,000 training images and 10,000 testing images of size 28x28, spread across ten classes representing the ten handwritten digits.

Generative Adversarial Networks present a system of models which learn to output data, similar to training data. A trained GAN takes noise as an input and is able to provide an output with the same dimensions and relevant features as the samples it has been trained with.

GAN's employ two neural networks - a *discriminator* and a *generator* which contest in a zero-sum game. The task of the *discriminator* is to distinguish generated images from real images, while the task of the generator is to produce realistic images which are able to fool the discriminator.

Training a shallow GAN with no convolutional layers poses problems such as mode collapse and unbalanced G-D losses which lead to low quality image output.

\begin{figure}
\begin{center}
\includegraphics[width=24em]{fig/generic_gan_mode_collapse.pdf}
\caption{Vanilla GAN mode collapse}
\label{fig:mode_collapse}
\end{center}
\end{figure}


Mode collapse is achieved with our naive *vanilla GAN* (Appendix-\ref{fig:vanilla_gan}) implementation after 200,000 batches. The generated images observed during a mode collapse can be seen on figure \ref{fig:mode_collapse}. The output of the generator only represents few of the labels originally fed. When mode collapse is reached loss function of the generator stops improving as shown in figure \ref{fig:vanilla_loss}. We observe, the discriminator loss tends to zero as the discriminator learns to assume and classify the fake 1's, while the generator is stuck producing 1 and hence not able to improve.

A significant improvement to this vanilla architecture is Deep Convolutional Generative Adversarial Networks (DCGAN).

It is possible to artificially balance the number of steps between G and D backpropagation, however we think with a solid GAN structure this step is not
really needed. Updating D more frequently than G resulted in additional cases of mode collapse due to the vanishing gradient issue. Updating G more
frequently has not proved to be beneficial either, as the discriminator did not learn how to distinguish real samples from fake samples quickly enough.

# DCGAN

## DCGAN Architecture description

DCGAN exploits convolutional stride to perform downsampling and transposed convolution to perform upsampling. 

We use batch normalization at the output of each convolutional layer (exception made for the output layer of the generator 
and the input layer of the discriminator). The activation functions of the intermediate layers are `ReLU` (for generator) and `LeakyReLU` with slope 0.2 (for discriminator).
The activation functions used for the output are `tanh` for the generator and `sigmoid` for the discriminator. The convolutional layers' output in the discriminator uses dropout before feeding the next layers. We noticed a significant improvement in performance, and estimated an optimal dropout rate of 0.25.
The optimizer used for training is `Adam(learning_rate=0.002, beta=0.5)`.

The main architecture used can be observed in figure \ref{fig:dcganarc}.

\begin{figure}
\begin{center}
\includegraphics[width=24em]{fig/DCGAN_arch.pdf}
\caption{DCGAN Architecture}
\label{fig:dcganarc}
\end{center}
\end{figure}

## Tests on MNIST

We evaluate three different GAN architectures, varying the size of convolutional layers in the generator, while retaining the structure presented in figure \ref{fig:dcganarc}: 

* Shallow: Conv128-Conv64
* Medium: Conv256-Conv128
* Deep: Conv512-Conv256

\begin{figure}
\begin{center}
\includegraphics[width=24em]{fig/med_dcgan_ex.png}
\includegraphics[width=24em]{fig/med_dcgan.png}
\caption{Medium DCGAN}
\label{fig:dcmed}
\end{center}
\end{figure}

We observed that the deep architectures result in a more easily achievable equilibria of G-D losses.
Our medium depth DCGAN achieves very good performance, balancing both binary cross entropy losses at approximately 0.9 after 5,000 batches, reaching equilibrium quicker and with less oscillation that the Deepest DCGAN tested.

As DCGAN is trained with no labels, the generator primary objective is to output images that fool the discriminator, but does not intrinsically separate the classes form one another. Therefore we sometimes observe oddly shape fused digits which may temporarily full be labeled real by the discriminator. This issue is solved by training the network for more batches or introducing a deeper architecture, as it can be deducted from a qualitative comparison
between figures \ref{fig:dcmed}, \ref{fig:dcshort} and \ref{fig:dclong}.

Applying Virtual Batch Normalization our Medium DCGAN does not provide observable changes in G-D balancing, but reduces within-batch correlation. Although it is difficult to qualitatively assess the improvements, figure \ref{fig:vbn_dc} shows results of the introduction of this technique. 

\begin{figure}
\begin{center}
\includegraphics[width=24em]{fig/vbn_dc.pdf}
\caption{DCGAN Virtual Batch Normalization}
\label{fig:vbn_dc}
\end{center}
\end{figure}

We evaluated the effect of different dropout rates (results in appendix figures \ref{fig:dcdrop1_1}, \ref{fig:dcdrop1_2}, \ref{fig:dcdrop2_1}, \ref{fig:dcdrop2_2}) and concluded that the optimisation
of the dropout hyper-parameter is essential for maximising performance. A high dropout rate results in DCGAN producing only artifacts that do not match any specific class due to the generator performing better than the discriminator. Conversely a low dropout rate leads to an initial stabilisation of G-D losses, but ultimately results in instability under the form of oscillation when training for a large number of batches.

Trying different parameters for artificial G-D balancing in the training stage did not achieve any significant benefits as discussed in section I,
exclusively leading to the generation of more artifacts (figure \ref{fig:baldc}). We also attempted to increase the D training steps with respect to G,
but no mode collapse was observed even with the shallow model. 

\begin{figure}
\begin{center}
\includegraphics[width=12em]{fig/bal4.png}
\caption{DCGAN Balancing G-D; D/G=3}
\label{fig:baldc}
\end{center}
\end{figure}

While training the different proposed DCGAN architectures, we did not observe mode collapse, indicating the DCGAN is less prone to a collapse compared to our *vanilla GAN*.

# CGAN

## CGAN Architecture description

CGAN is a conditional version of a GAN which utilises labeled data. Unlike DCGAN, CGAN is trained with explicitly provided labels which allow CGAN to associate features with specific labels. This has the intrinsic advantage of allowing us to specify the label of generated data.  The baseline CGAN which we evaluate is visible in figure \ref{fig:cganarc}. The baseline CGAN architecture presents a series blocks each contained a dense layer, LeakyReLu layer (slope=0.2) and a Batch Normalisation layer. The baseline discriminator uses Dense layers, followed by LeakyReLu (slope=0.2) and a Droupout layer.
The optimizer used for training is `Adam`(`learning_rate=0.002`, `beta=0.5`).

The Convolutional CGAN analysed follows the structure presented in the relevant Appendix section. It uses TODO ADD BRIEF DESCRIPTION

We evaluate permutations of the architecture involving:

* Shallow CGAN - 1 Dense-LeakyReLu-BN  block
* Deep CGAN - 5 Dense-LeakyReLu-BN
* Deep Convolutional GAN - DCGAN + conditional label input
* One-Sided Label Smoothing (LS)
* Various Dropout (DO)- Use 0.1, 0.3 and 0.5
* Virtual Batch Normalisation (VBN)- Normalisation based on one batch(BN) [@improved]

\begin{figure}
\begin{center}
\includegraphics[width=24em]{fig/CGAN_arch.pdf}
\caption{CGAN Architecture}
\label{fig:cganarc}
\end{center}
\end{figure}

## Tests on MNIST 

When comparing the three levels of depth for the architectures it is possible to notice significant differences for the G-D losses balancing. In
a shallow architecture we notice a high oscillation of the generator loss (figure \ref{fig:cshort}), which is being overpowered by the discriminator. Despite this we don't
experience any issues with vanishing gradient, hence no mode collapse is reached. 
Similarly, with a deep architecture the discriminator still overpowers the generator, and an equilibrium between the two losses is not achieved. The image quality in both cases is not really high: we can see that even after 20,000 batches the some pictures appear to be slightly blurry (figure \ref{fig:clong}).
The best compromise is reached for 3 Dense-LeakyReLu-BN blocks as shown in figure \ref{fig:cmed}. It is possible to observe that G-D losses are perfectly balanced, and their value goes below 1.
The image quality is better than the two examples reported earlier, proving that this Medium-depth architecture is the best compromise.

\begin{figure}
\begin{center}
\includegraphics[width=24em]{fig/med_cgan_ex.png}
\includegraphics[width=24em]{fig/med_cgan.png}
\caption{Medium CGAN}
\label{fig:cmed}
\end{center}
\end{figure}

The three levels of dropout rates attempted do not affect the performance significantly, and as we can see in figures \ref{fig:cg_drop1_1} (0.1), \ref{fig:cmed}(0.3) and \ref{fig:cg_drop2_1}(0.5), both
image quality and G-D losses are comparable.

The biggest improvement in performance is obtained through one-sided label smoothing, shifting the true labels form 1 to 0.9 to reinforce discriminator behaviour.
Using 0.1 instead of zero for the fake labels does not improve performance, as the discriminator loses incentive to do better (generator behaviour is reinforced).
Performance results for one-sided labels smoothing with true labels = 0.9 are shown in figure \ref{fig:smooth}.

\begin{figure}
\begin{center}
\includegraphics[width=24em]{fig/smoothing_ex.png}
\caption{One sided label smoothing}
\label{fig:smooth}
\end{center}
\end{figure}

Virtual Batch normalization does not affect performance significantly. Applying this technique to both the CGAN architectures used keeps G-D losses
mostly unchanged. The biggest change we expect to see is a lower correlation between images in the same batch. This aspect will mostly affect
performance when training a classifier with the generated images from CGAN, as we will obtain more diverse images. Training with a larger batch size 
would show more significant results, but since we set this parameter to 128 the issue of within-batch correlation is limited.

Similarly to DCGAN, changing the G-D steps did not lead to good quality results as it can be seen in figure \ref{fig:cbalance}, in which we tried to train
with D/G=15 for 10,000 batches, trying to initialize good discriminator weights, to then revert to a D/G=1, aiming to balance the losses of the two networks. 
Even in the case of a shallow network, in which mode collapse should have been more likely, we observed diversity between the samples produced for
the same classes, indicating that mode collapse still did not occur.

\begin{figure}
\begin{center}
\includegraphics[width=8em]{fig/bal1.png}
\includegraphics[width=8em]{fig/bal2.png}
\includegraphics[width=8em]{fig/bal3.png}
\caption{CGAN G-D balancing results}
\label{fig:cbalance}
\end{center}
\end{figure}

The best performing architecture was Convolutional CGAN. It is difficult to assess any potential improvement at this stage, since the samples produced 
after around 10,000 batches are indistinguishable from the ones of the MNIST dataset (as it can be seen in figure \ref{fig:cdc}). Training CDCGAN for more than
15,000 batches is however not beneficial, as the discriminator will keep improving, leading the generator to produce bad samples as shown in the reported example.
We find a good balance for 12,000 batches.

\begin{figure}
\begin{center}
\includegraphics[width=8em]{fig/cdc1.png}
\includegraphics[width=8em]{fig/cdc2.png}
\includegraphics[width=8em]{fig/cdc3.png}
\caption{CDCGAN outputs; 1000 batches - 12000 batches - 20000 batches}
\label{fig:cbalance}
\end{center}
\end{figure}


Virtual Batch Normalization on this architecture was not attempted as it significantly
increased the training time (about twice more). 
Introducing one-sided label smoothing produced very similar results, hence a quantitative performance assessment will need to 
be performed in the next section through the introduction of Inception Scores.

# Inception Score

Inception score is calculated as introduced by Tim Salimans et. al [@improved]. However as we are evaluating MNIST, we use LeNet-5 [@lenet]  as the basis of the inceptioen score.
We use the logits extracted from LeNet:

$$ \textrm{IS}(x) = \exp(\mathbb{E}_x \left( \textrm{KL} ( p(y\mid x) \| p(y) ) \right) ) $$

We further report the classification accuracy as found with LeNet. For coherence purposes the inception scores were
calculated training the LeNet classifier under the same conditions across all experiments (100 epochs with `SGD`, `learning rate=0.001`).

\begin{table}[H]
\begin{tabular}{llll}
                      & Accuracy & IS		 & GAN Tr. Time \\ \hline
Shallow CGAN          & 0.645    & 3.57          & 8:14         \\
Medium CGAN           & 0.715    & 3.79          & 10:23        \\
Deep CGAN             & 0.739    & 3.85          & 16:27        \\
Convolutional CGAN    & 0.899	 & 7.41          & 1:05:27      \\
Medium CGAN+LS        & 0.749    & 3.643         & 10:42        \\
Convolutional CGAN+LS &          &               & 1:12:39      \\
Medium CGAN DO=0.1    & 0.761    & 3.836         & 10:36        \\
Medium CGAN DO=0.5    & 0.725    & 3.677         & 10:36        \\
Medium CGAN+VBN       & 0.735    & 3.82          & 19:38        \\
Medium CGAN+VBN+LS    & 0.763    & 3.91          & 19:43        \\
*MNIST original       & 0.9846   & 9.685         & N/A          \\ \hline
\end{tabular}
\end{table}

## Discussion

### Architecture

We observe increased accruacy as we increase the depth of the GAN arhitecture at the cost of the training time. There appears to be diminishing returns with the deeper networks, and larger improvements are achievable with specific optimisation techniques. Despite the initial considerations about G-D losses for the Convolutional CGAN, there seems to be an improvement in inception score and test accuracy with respect to the other analysed cases. One sided label smoothing however did not improve this performanc any further, suggesting that reinforcing discriminator behaviour does not benefit the system in this case.

### One Side Label Smoothing

One sided label smoothing involves relaxing our confidence on the labels in our data. Tim Salimans et. al. [@improved] show smoothing of the positive labels reduces the vulnerability of the neural network to adversarial examples. We observe significant improvements to the Inception score and classification accuracy in the case of our baseline (Medium CGAN).

### Virtual Batch Normalisation

Virtual Batch Noramlisation is a further optimisation technique proposed by Tim Salimans et. al. [@improved]. Virtual batch normalisation is a modification to the batch normalisation layer, which performs normalisation based on statistics from a reference batch. We observe that VBN improved the classification accuracy and the Inception score due to the provided reduction in intra-batch correlation.

### Dropout

The effect of dropout for the non-convolutional CGAN architecture does not affect performance as much as in DCGAN, nor does it seem to affect the quality of images produced, together with the G-D loss remain almost unchanged. Ultimately, judging from the inception scores, it is preferable to use a low dropout rate (in our case 0.1 seems to be the dropout rate that achieves the best results).

# Re-training the handwritten digit classifier

## Results

In this section we analyze the effect of retraining the classification network using a mix of real and generated data, highlighting the benefits of 
injecting generated samples in the original training set to boost testing accuracy.

As observed in figure \ref{fig:mix1} we performed two experiments for performance evaluation: 

* Keeping the same number of training samples while just changing the amount of real to generated data (55,000 samples in total).
* Keeping the whole training set from MNIST and adding generated samples from CGAN.

\begin{figure}
\begin{center}
\includegraphics[width=12em]{fig/mix_zoom.png}
\includegraphics[width=12em]{fig/added_generated_data.png}
\caption{Mix data, left unchanged samples number, right added samples}
\label{fig:mix1}
\end{center}
\end{figure}

Both experiments show that an optimal amount of data to boost testing accuracy on the original MNIST dataset is around 30% generated data as in both cases we observe an increase in accuracy by around 0.3%. In absence of original data the testing accuracy drops significantly to around 20% for both cases.

## Adapted Training Strategy

For this section we will use 550 samples from MNIST (55 samples per class). Training the classifier yields major challenges, since the amount of samples available for training is relatively small.

Training for 100 epochs, similarly to the previous section, is clearly not enough. The MNIST test set accuracy reached in this case
is only 62%, while training for 300 epochs we can reach up to 88%. The learning curve in figure \ref{fig:few_real} suggests
we cannot achieve much better with this very small amount of data, since the validation accuracy plateaus, while the training accuracy almost reaches 100%.

\begin{figure}
\begin{center}
\includegraphics[width=24em]{fig/train_few_real.png}
\caption{Training with few real samples}
\label{fig:few_real}
\end{center}
\end{figure}

We conduct one experiment, feeding the test set to a LeNet trained exclusively on data generated from our CGAN. It is noticeable that training 
for the first 5 epochs gives good results (figure \ref{fig:fake_only}) when compared to the learning curve obtained when training the network with only the few real samples. This
indicates that we can use the generated data to train the first steps of the network (initial weights) and apply the real sample for 300 epochs to obtain 
a finer tuning. As observed in figure \ref{fig:few_init} the first steps of retraining will show oscillation, since the fine tuning will try and adapt to the newly fed data. The maximum accuracy reached before the validation curve plateaus is 88.6%, indicating that this strategy proved to be somewhat successful at 
improving testing accuracy. 

\begin{figure}
\begin{center}
\includegraphics[width=24em]{fig/initialization.png}
\caption{Retraining with initialization from generated samples}
\label{fig:few_init}
\end{center}
\end{figure}


We try to improve the results obtained earlier by retraining LeNet with mixed data: few real samples and plenty of generated samples (160,000)
(learning curve show in figure \ref{fig:training_mixed}. The peak accuracy reached is 91%. We then try to remove the generated 
samples to apply fine tuning, using only the real samples. After 300 more epochs (figure \ref{fig:training_mixed}) the test accuracy is 
boosted to 92%, making this technique the most successful attempt of improvement while using a limited amount of data from MNIST dataset.

\begin{figure}
\begin{center}
\includegraphics[width=12em]{fig/training_mixed.png}
\includegraphics[width=12em]{fig/fine_tuning.png}
\caption{Retraining; Mixed initialization left, fine tuning right}
\label{fig:training_mixed}
\end{center}
\end{figure}

Failures classification examples are displayed in figure \ref{fig:retrain_fail}. The results showed indicate that the network we trained is actually performing quite well,
as most of the testing images that got misclassified (mainly nines and fours) show ambiguities.

\newpage

# Bonus Questions

## Relation to PCA

Similarly to GAN's, PCA can be used to formulate **generative** models of a system. While GAN's are trained neural networks, PCA is a definite statistical procedure which perform orthogonal transformations of the data. Both attempt to identify the most important or *variant* features of the data (which we may then use to generate new data), but PCA by itself is only able to extract linearly related features. In a purely linear system, a GAN would be converging to PCA. In a more complicated system, we would indeed to identify relevant kernels in order to extract relevant features with PCA, while a GAN is able to leverage dense and convolutional neural network layers which may be trained to perform relevant transformations.

## Data representation

TODO EXPLAIN WHAT WE HAVE DONE HERE

\begin{figure}
   \centering
   \subfloat[][]{\includegraphics[width=.2\textwidth]{fig/pca-mnist.png}}\quad
   \subfloat[][]{\includegraphics[width=.2\textwidth]{fig/tsne-mnist.png}}\\
   \subfloat[][]{\includegraphics[width=.2\textwidth]{fig/pca-cgan.png}}\quad
   \subfloat[][]{\includegraphics[width=.2\textwidth]{fig/tsne-cgan.png}}\\
   \subfloat[][]{\includegraphics[width=.2\textwidth]{fig/pca-cdc.png}}\quad
   \subfloat[][]{\includegraphics[width=.2\textwidth]{fig/tsne-cdc.png}}
   \caption{Visualisations: a)MNIST|PCA b)MNIST|TSNE c)CGAN-gen|PCA d)CGAN-gen|TSNE e)CDCGAN-gen|PCA f)CDCGAN-gen|TSNE}
   \label{fig:features}
\end{figure}


\begin{figure}
   \centering
   \subfloat[][]{\includegraphics[width=.22\textwidth]{fig/pr-mnist.png}}\quad
   \subfloat[][]{\includegraphics[width=.22\textwidth]{fig/pr-cgan.png}}
   \caption{Precisional Recall Curves a) MNIST : b) CGAN output}
   \label{fig:rocpr}
\end{figure}

## Factoring in classification loss into GAN

Classification accuracy and Inception score can be factored into the GAN to attempt to produce more realistic images. Shane Barrat and Rishi Sharma are able to indirectly optimise the inception score to over 900, and note that directly optimising for maximised Inception score produces adversarial examples [@inception-note]. 
Nevertheless, a pretrained static classifier may be added to the GAN model, and it's loss incorporated into the loss added too the loss of the GAN.

$$ L_{\textrm{total}} = \alpha L_{\textrm{LeNet}} + \beta L_{\textrm{generator}} $$


# References

<div id="refs"></div>

\newpage

# Appendix 

## DCGAN-Appendix

\begin{figure}[H]
\begin{center}
\includegraphics[width=24em]{fig/vanilla_gan_arc.pdf}
\caption{Vanilla GAN Architecture}
\label{fig:vanilla_gan}
\end{center}
\end{figure}

\begin{figure}[H]
\begin{center}
\includegraphics[width=24em]{fig/generic_gan_loss.png}
\caption{Shallow GAN D-G Loss}
\label{fig:vanilla_loss}
\end{center}
\end{figure}

\begin{figure}[H]
\begin{center}
\includegraphics[width=24em]{fig/short_dcgan_ex.png}
\includegraphics[width=24em]{fig/short_dcgan.png}
\caption{Shallow DCGAN}
\label{fig:dcshort}
\end{center}
\end{figure}

\begin{figure}[H]
\begin{center}
\includegraphics[width=24em]{fig/long_dcgan_ex.png}
\includegraphics[width=24em]{fig/long_dcgan.png}
\caption{Deep DCGAN}
\label{fig:dclong}
\end{center}
\end{figure}

\begin{figure}[H]
\begin{center}
\includegraphics[width=24em]{fig/dcgan_dropout01_gd.png}
\caption{DCGAN Dropout 0.1 G-D Losses}
\label{fig:dcdrop1_1}
\end{center}
\end{figure}

\begin{figure}[H]
\begin{center}
\includegraphics[width=14em]{fig/dcgan_dropout01.png}
\caption{DCGAN Dropout 0.1 Generated Images}
\label{fig:dcdrop1_2}
\end{center}
\end{figure}

\begin{figure}[H]
\begin{center}
\includegraphics[width=24em]{fig/dcgan_dropout05_gd.png}
\caption{DCGAN Dropout 0.5 G-D Losses}
\label{fig:dcdrop2_1}
\end{center}
\end{figure}

\begin{figure}[H]
\begin{center}
\includegraphics[width=14em]{fig/dcgan_dropout05.png}
\caption{DCGAN Dropout 0.5 Generated Images}
\label{fig:dcdrop2_2}
\end{center}
\end{figure}

## CGAN-Appendix

\begin{figure}[H]
\begin{center}
\includegraphics[width=24em]{fig/CDCGAN_arch.pdf}
\caption{Deep Convolutional CGAN Architecture}
\label{fig:cdcganarc}
\end{center}
\end{figure}

\begin{figure}[H]
\begin{center}
\includegraphics[width=24em]{fig/short_cgan_ex.png}
\includegraphics[width=24em]{fig/short_cgan.png}
\caption{Shallow CGAN}
\label{fig:cshort}
\end{center}
\end{figure}

\begin{figure}[H]
\begin{center}
\includegraphics[width=24em]{fig/long_cgan_ex.png}
\includegraphics[width=24em]{fig/long_cgan.png}
\caption{Deep CGAN}
\label{fig:clong}
\end{center}
\end{figure}

\begin{figure}[H]
\begin{center}
\includegraphics[width=24em]{fig/cgan_dropout01.png}
\caption{CGAN Dropout 0.1 G-D Losses}
\label{fig:cg_drop1_1}
\end{center}
\end{figure}

\begin{figure}[H]
\begin{center}
\includegraphics[width=14em]{fig/cgan_dropout01_ex.png}
\caption{CGAN Dropout 0.1 Generated Images}
\label{fig:cg_drop1_2}
\end{center}
\end{figure}

\begin{figure}[H]
\begin{center}
\includegraphics[width=24em]{fig/cgan_dropout05.png}
\caption{CGAN Dropout 0.5 G-D Losses}
\label{fig:cg_drop2_1}
\end{center}
\end{figure}

\begin{figure}[H]
\begin{center}
\includegraphics[width=14em]{fig/cgan_dropout05_ex.png}
\caption{CGAN Dropout 0.5 Generated Images}
\label{fig:cg_drop2_2}
\end{center}
\end{figure}

\begin{figure}[H]
\begin{center}
\includegraphics[width=12em]{fig/good_ex.png}
\includegraphics[width=12em]{fig/bad_ex.png}
\includegraphics[width=24em]{fig/cdcgan.png}
\caption{Convolutional CGAN+LS}
\label{fig:cdcloss}
\end{center}
\end{figure}

\begin{figure}[H]
\begin{center}
\includegraphics[width=24em]{fig/smoothing.png}
\caption{CGAN+LS G-D Losses}
\label{fig:smoothgd}
\end{center}
\end{figure}

## CDCGAN Alternative Architecture

### Generator
```
__________________________________________________________________________________________________
Layer (type)                    Output Shape         Param #     Connected to                     
==================================================================================================
input_1 (InputLayer)            (None, 100)          0                                            
__________________________________________________________________________________________________
dense_2 (Dense)                 (None, 3136)         316736      input_1[0][0]                    
__________________________________________________________________________________________________
reshape_2 (Reshape)             (None, 7, 7, 64)     0           dense_2[0][0]                    
__________________________________________________________________________________________________
conv2d_transpose_1 (Conv2DTrans (None, 14, 14, 64)   36928       reshape_2[0][0]                  
__________________________________________________________________________________________________
batch_normalization_1 (BatchNor (None, 14, 14, 64)   256         conv2d_transpose_1[0][0]         
__________________________________________________________________________________________________
activation_1 (Activation)       (None, 14, 14, 64)   0           batch_normalization_1[0][0]      
__________________________________________________________________________________________________
input_2 (InputLayer)            (None, 1)            0                                            
__________________________________________________________________________________________________
conv2d_transpose_2 (Conv2DTrans (None, 28, 28, 64)   36928       activation_1[0][0]               
__________________________________________________________________________________________________
dense_1 (Dense)                 (None, 64)           128         input_2[0][0]                    
__________________________________________________________________________________________________
batch_normalization_2 (BatchNor (None, 28, 28, 64)   256         conv2d_transpose_2[0][0]         
__________________________________________________________________________________________________
reshape_1 (Reshape)             (None, 1, 1, 64)     0           dense_1[0][0]                    
__________________________________________________________________________________________________
activation_2 (Activation)       (None, 28, 28, 64)   0           batch_normalization_2[0][0]      
__________________________________________________________________________________________________
up_sampling2d_1 (UpSampling2D)  (None, 28, 28, 64)   0           reshape_1[0][0]                  
__________________________________________________________________________________________________
multiply_1 (Multiply)           (None, 28, 28, 64)   0           activation_2[0][0]               
                                                                 up_sampling2d_1[0][0]            
__________________________________________________________________________________________________
conv2d_1 (Conv2D)               (None, 28, 28, 64)   36928       multiply_1[0][0]                 
__________________________________________________________________________________________________
batch_normalization_3 (BatchNor (None, 28, 28, 64)   256         conv2d_1[0][0]                   
__________________________________________________________________________________________________
activation_3 (Activation)       (None, 28, 28, 64)   0           batch_normalization_3[0][0]      
__________________________________________________________________________________________________
multiply_2 (Multiply)           (None, 28, 28, 64)   0           activation_3[0][0]               
                                                                 up_sampling2d_1[0][0]            
__________________________________________________________________________________________________
conv2d_2 (Conv2D)               (None, 28, 28, 64)   36928       multiply_2[0][0]                 
__________________________________________________________________________________________________
batch_normalization_4 (BatchNor (None, 28, 28, 64)   256         conv2d_2[0][0]                   
__________________________________________________________________________________________________
activation_4 (Activation)       (None, 28, 28, 64)   0           batch_normalization_4[0][0]      
__________________________________________________________________________________________________
multiply_3 (Multiply)           (None, 28, 28, 64)   0           activation_4[0][0]               
                                                                 up_sampling2d_1[0][0]            
__________________________________________________________________________________________________
conv2d_3 (Conv2D)               (None, 28, 28, 1)    577         multiply_3[0][0]                 
__________________________________________________________________________________________________
activation_5 (Activation)       (None, 28, 28, 1)    0           conv2d_3[0][0]                   
==================================================================================================
Total params: 466,177
Trainable params: 465,665
Non-trainable params: 512
__________________________________________________________________________________________________
```

### Discriminator

```
__________________________________________________________________________________________________
Layer (type)                    Output Shape         Param #     Connected to                     
==================================================================================================
input_3 (InputLayer)            (None, 28, 28, 1)    0                                            
__________________________________________________________________________________________________
input_2 (InputLayer)            (None, 1)            0                                            
__________________________________________________________________________________________________
conv2d_4 (Conv2D)               (None, 28, 28, 64)   640         input_3[0][0]                    
__________________________________________________________________________________________________
dense_3 (Dense)                 (None, 64)           128         input_2[0][0]                    
__________________________________________________________________________________________________
batch_normalization_5 (BatchNor (None, 28, 28, 64)   256         conv2d_4[0][0]                   
__________________________________________________________________________________________________
reshape_3 (Reshape)             (None, 1, 1, 64)     0           dense_3[0][0]                    
__________________________________________________________________________________________________
leaky_re_lu_1 (LeakyReLU)       (None, 28, 28, 64)   0           batch_normalization_5[0][0]      
__________________________________________________________________________________________________
up_sampling2d_2 (UpSampling2D)  (None, 28, 28, 64)   0           reshape_3[0][0]                  
__________________________________________________________________________________________________
multiply_4 (Multiply)           (None, 28, 28, 64)   0           leaky_re_lu_1[0][0]              
                                                                 up_sampling2d_2[0][0]            
__________________________________________________________________________________________________
conv2d_5 (Conv2D)               (None, 28, 28, 64)   36928       multiply_4[0][0]                 
__________________________________________________________________________________________________
batch_normalization_6 (BatchNor (None, 28, 28, 64)   256         conv2d_5[0][0]                   
__________________________________________________________________________________________________
leaky_re_lu_2 (LeakyReLU)       (None, 28, 28, 64)   0           batch_normalization_6[0][0]      
__________________________________________________________________________________________________
multiply_5 (Multiply)           (None, 28, 28, 64)   0           leaky_re_lu_2[0][0]              
                                                                 up_sampling2d_2[0][0]            
__________________________________________________________________________________________________
conv2d_6 (Conv2D)               (None, 28, 28, 64)   36928       multiply_5[0][0]                 
__________________________________________________________________________________________________
batch_normalization_7 (BatchNor (None, 28, 28, 64)   256         conv2d_6[0][0]                   
__________________________________________________________________________________________________
leaky_re_lu_3 (LeakyReLU)       (None, 28, 28, 64)   0           batch_normalization_7[0][0]      
__________________________________________________________________________________________________
multiply_6 (Multiply)           (None, 28, 28, 64)   0           leaky_re_lu_3[0][0]              
                                                                 up_sampling2d_2[0][0]            
__________________________________________________________________________________________________
conv2d_7 (Conv2D)               (None, 14, 14, 64)   36928       multiply_6[0][0]                 
__________________________________________________________________________________________________
batch_normalization_8 (BatchNor (None, 14, 14, 64)   256         conv2d_7[0][0]                   
__________________________________________________________________________________________________
leaky_re_lu_4 (LeakyReLU)       (None, 14, 14, 64)   0           batch_normalization_8[0][0]      
__________________________________________________________________________________________________
conv2d_8 (Conv2D)               (None, 7, 7, 64)     36928       leaky_re_lu_4[0][0]              
__________________________________________________________________________________________________
batch_normalization_9 (BatchNor (None, 7, 7, 64)     256         conv2d_8[0][0]                   
__________________________________________________________________________________________________
leaky_re_lu_5 (LeakyReLU)       (None, 7, 7, 64)     0           batch_normalization_9[0][0]      
__________________________________________________________________________________________________
flatten_1 (Flatten)             (None, 3136)         0           leaky_re_lu_5[0][0]              
__________________________________________________________________________________________________
dropout_1 (Dropout)             (None, 3136)         0           flatten_1[0][0]                  
__________________________________________________________________________________________________
dense_4 (Dense)                 (None, 1)            3137        dropout_1[0][0]                  
==================================================================================================
Total params: 152,897
Trainable params: 152,257
Non-trainable params: 640
__________________________________________________________________________________________________
```

## Retrain-Appendix

\begin{figure}[H]
\begin{center}
\includegraphics[width=24em]{fig/fake_only.png}
\caption{Retraining with generated samples only}
\label{fig:fake_only}
\end{center}
\end{figure}

\begin{figure}[H]
\begin{center}
\includegraphics[width=12em]{fig/retrain_fail.png}
\caption{Retraining failures}
\label{fig:retrain_fail}
\end{center}
\end{figure}