aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorVasil Zlatanov <v@skozl.com>2018-11-20 18:40:43 +0000
committerVasil Zlatanov <v@skozl.com>2018-11-20 18:40:43 +0000
commit646a0e43c4a52d16528c9d2692143e90b56e8774 (patch)
treefe0d518a4c7dd40e58ee06e6b6329700e1671fcb
parente4c77bbbd26637bd75712686ccec90b1fc95ad56 (diff)
downloadvz215_np1915-646a0e43c4a52d16528c9d2692143e90b56e8774.tar.gz
vz215_np1915-646a0e43c4a52d16528c9d2692143e90b56e8774.tar.bz2
vz215_np1915-646a0e43c4a52d16528c9d2692143e90b56e8774.zip
Add conclusion
-rwxr-xr-xreport/paper.md4
1 files changed, 4 insertions, 0 deletions
diff --git a/report/paper.md b/report/paper.md
index 0f385c1..af24be3 100755
--- a/report/paper.md
+++ b/report/paper.md
@@ -461,6 +461,10 @@ Seed & Individual$(M=120)$ & Bag + Feature Ens.$(M=60+95)$\\ \hline
\label{tab:compare}
\end{table}
+# Conclusion
+
+We have looked at the relevance of PCA and LDA when applied to face recognition, and analyzed the individual and combined performance. We have further looked at improvement made available by ensemble learning, utilising data and feature randomisation together with PCA-LDA and found that it is an effective approach to face recognition.
+
# References
<div id="refs"></div>