aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authornunzip <np.scarh@gmail.com>2018-11-20 18:10:00 +0000
committernunzip <np.scarh@gmail.com>2018-11-20 18:10:00 +0000
commit858169eab2043dbacfe160f7e6873501c13f8287 (patch)
treefb6394929a3e2abb58a9c338080a4884b3e9b370
parent3f19f51598d126ca3b8cfe28dbe5b86111398a17 (diff)
downloadvz215_np1915-858169eab2043dbacfe160f7e6873501c13f8287.tar.gz
vz215_np1915-858169eab2043dbacfe160f7e6873501c13f8287.tar.bz2
vz215_np1915-858169eab2043dbacfe160f7e6873501c13f8287.zip
Add variance part 1
-rwxr-xr-xreport/paper.md4
1 files changed, 2 insertions, 2 deletions
diff --git a/report/paper.md b/report/paper.md
index bd7ef71..32db134 100755
--- a/report/paper.md
+++ b/report/paper.md
@@ -42,8 +42,8 @@ figure \ref{fig:mean_face}.
\end{center}
\end{figure}
-To perform face recognition best M eigenvectors associated with the
-largest eigenvalues are chosen. We found that the opimal value for M
+To perform face recognition the best M eigenvectors associated with the
+largest eigenvalues (carrying the largest data variance, fig. \ref{fig:eigvariance}) are chosen. We found that the opimal value for M
when when performing PCA is $M=99$ with an accuracy of 57%. For larger M
the accuracy plateaus.