aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authornunzip <np.scarh@gmail.com>2018-12-14 12:35:37 +0000
committernunzip <np.scarh@gmail.com>2018-12-14 12:35:37 +0000
commit8dad008167c2a7d9402947f6e5234ca752b7b099 (patch)
tree9bb8406d452292b4dfb31abcef54214ca0831d84
parent1a67e68bd1b51b7a0ef860542a5ab488384d91b4 (diff)
downloadvz215_np1915-8dad008167c2a7d9402947f6e5234ca752b7b099.tar.gz
vz215_np1915-8dad008167c2a7d9402947f6e5234ca752b7b099.tar.bz2
vz215_np1915-8dad008167c2a7d9402947f6e5234ca752b7b099.zip
Change 'neighbors' to 'neighbours'HEADmaster
-rw-r--r--report/metadata.yaml2
1 files changed, 1 insertions, 1 deletions
diff --git a/report/metadata.yaml b/report/metadata.yaml
index a5929fa..74450b7 100644
--- a/report/metadata.yaml
+++ b/report/metadata.yaml
@@ -13,7 +13,7 @@ nocite: |
abstract: |
This report analyses distance metrics learning techniques with regards to
identification accuracy for the dataset CUHK03. The baseline method used for
- identification is Nearest Neighbors based on Euclidean distance.
+ identification is Nearest Neighbours based on Euclidean distance.
The improved approach evaluated utilises Jaccardian metrics to rearrange the NN
ranklist based on reciprocal neighbours. While this approach is more complex and introduces new hyperparameters,
significant accuracy improvements are observed -