aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorVasil Zlatanov <vasil@netcraft.com>2018-11-14 23:03:37 +0000
committerVasil Zlatanov <vasil@netcraft.com>2018-11-14 23:03:37 +0000
commit948eca906f80a06e7386e1c7a31e3678178f82ad (patch)
tree8ed7449565097fe73178b2c52105c02630106f9b
parent3a7121ad1800dbb569acbe8af37974a2d6114b0f (diff)
downloadvz215_np1915-948eca906f80a06e7386e1c7a31e3678178f82ad.tar.gz
vz215_np1915-948eca906f80a06e7386e1c7a31e3678178f82ad.tar.bz2
vz215_np1915-948eca906f80a06e7386e1c7a31e3678178f82ad.zip
Add randomisation in feature space
-rwxr-xr-xtrain.py52
1 files changed, 34 insertions, 18 deletions
diff --git a/train.py b/train.py
index faa6f65..2db7a7a 100755
--- a/train.py
+++ b/train.py
@@ -109,8 +109,18 @@ def test_model(M, faces_train, faces_test, target_train, target_test, args):
# plt.semilogy(range(2576), np.absolute(416*np.flip(e_vals)))
# plt.show()
- e_vals = np.flip(e_vals)[:M]
- e_vecs = np.fliplr(e_vecs).T[:M]
+ e_vals = np.flip(e_vals)
+ e_vecs = np.fliplr(e_vecs).T
+
+ if args.random:
+ random_features = random.sample(range(M-args.random, M), args.random)
+ for i in range(args.random):
+ e_vals[M-i] = e_vals[random_features[i]]
+ e_vecs[M-i] = e_vecs[random_features[i]]
+
+ e_vals = e_vals[:M]
+ e_vecs = e_vecs[:M]
+
deviations_tr = np.flip(deviations_tr)
# deviations_tst = np.flip(deviations_tst)
faces_train = np.dot(faces_train, e_vecs.T)
@@ -129,7 +139,7 @@ def test_model(M, faces_train, faces_test, target_train, target_test, args):
if args.lda:
if args.pca_r or (args.pca and M > n_training_faces - n_faces):
- lda = LinearDiscriminantAnalysis(n_components=M, solver='eigen')
+ lda = LinearDiscriminantAnalysis(n_components=M, solver='svd')
else:
lda = LinearDiscriminantAnalysis(n_components=M, store_covariance='True')
@@ -137,8 +147,7 @@ def test_model(M, faces_train, faces_test, target_train, target_test, args):
faces_test = lda.transform(faces_test)
class_means = lda.means_
e_vals = lda.explained_variance_ratio_
- scatter_matrix = lda.covariance_
- print("Rank of scatter:", LA.matrix_rank(scatter_matrix))
+ # scatter_matrix = lda.covariance_; print("Rank of scatter:", LA.matrix_rank(scatter_matrix))
if args.faces:
if args.lda:
@@ -191,7 +200,9 @@ def main():
parser.add_argument("-i", "--data", help="Input CSV file", required=True)
parser.add_argument("-m", "--eigen", help="Number of eigenvalues in model", type=int, default = 10 )
parser.add_argument("-M", "--reigen", help="Number of eigenvalues in model", type=int)
- parser.add_argument("-b", "--bagging", help="Number of bagging baggings to use", type=int)
+ parser.add_argument("-e", "--ensemble", help="Number of ensemmbles to use", type=int, default = 0)
+ parser.add_argument("-b", "--bagging", help="Number of bags to use", action='store_true')
+ parser.add_argument("-R", "--random", help="Number of eigen value to randomise", type=int)
parser.add_argument("-n", "--neighbors", help="How many neighbors to use", type=int, default = 1)
##USING STANDARD 1 FOR NN ACCURACY
parser.add_argument("-f", "--faces", help="Show faces", type=int, default = 0)
@@ -218,14 +229,18 @@ def main():
faces_train, faces_test, target_train, target_test = test_split(n_faces, raw_faces, args.split, args.seed)
- if args.bagging:
+ if args.ensemble:
n_training_faces = int(round(n_cases*(1 - args.split)))
- faces_train_bagged = np.zeros((args.bagging, n_faces, n_training_faces, n_pixels))
- for x in range(args.bagging):
- for k in range(n_faces):
- samples = random.choices(range(n_training_faces), k=n_training_faces)
- faces_train_bagged[x][k] = [faces_train[i+n_training_faces*k] for i in samples]
- faces_train_bagged = faces_train_bagged.reshape(args.bagging, n_faces*n_training_faces, n_pixels)
+ faces_train_ens = np.zeros((args.ensemble, n_faces, n_training_faces, n_pixels))
+ for x in range(args.ensemble):
+ if args.bagging:
+ for k in range(n_faces):
+ samples = random.choices(range(n_training_faces), k=n_training_faces)
+ faces_train_ens[x][k] = [faces_train[i+n_training_faces*k] for i in samples]
+ else:
+ faces_train_ens[x] = faces_train.reshape((n_faces, n_training_faces, n_pixels))
+
+ faces_train_ens = faces_train_ens.reshape(args.ensemble, n_faces*n_training_faces, n_pixels)
if args.classifyalt:
faces_train = faces_train.reshape(n_faces, int(faces_train.shape[0]/n_faces), n_pixels)
@@ -254,11 +269,11 @@ def main():
plt.ylabel('Recognition Accuracy (%)')
plt.grid(True)
plt.show()
- elif args.bagging:
- rec_error = np.zeros((args.bagging, n_faces, faces_test.shape[0]))
- target_pred = np.zeros((args.bagging, target_test.shape[0]))
- for i in range(args.bagging):
- target_pred[i], rec_error[i] = test_model(args.eigen, faces_train_bagged[i], faces_test, target_train, target_test, args)
+ elif args.ensemble:
+ rec_error = np.zeros((args.ensemble, n_faces, faces_test.shape[0]))
+ target_pred = np.zeros((args.ensemble, target_test.shape[0]))
+ for i in range(args.ensemble):
+ target_pred[i], rec_error[i] = test_model(args.eigen, faces_train_ens[i], faces_test, target_train, target_test, args)
target_pred_comb = np.zeros(target_pred.shape[1])
target_pred = target_pred.astype(int).T
@@ -270,6 +285,7 @@ def main():
start = timer()
target_pred, distances = test_model(M, faces_train, faces_test, target_train, target_test, args)
end = timer()
+
draw_results(args, target_test, target_pred)
if __name__ == "__main__":