aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorVasil Zlatanov <v@skozl.com>2018-11-06 21:27:28 +0000
committerVasil Zlatanov <v@skozl.com>2018-11-06 21:27:28 +0000
commit96cfab1375e1b2a3f7af689fbd875c836832eb20 (patch)
tree792a37351fe0f42f33162d0f168c6b5a4328c554
parentf8ee4b9bafe082b552773ccc604f41e104250760 (diff)
parentadf17d6fe8ae651297e604644392a67dd5bc96a0 (diff)
downloadvz215_np1915-96cfab1375e1b2a3f7af689fbd875c836832eb20.tar.gz
vz215_np1915-96cfab1375e1b2a3f7af689fbd875c836832eb20.tar.bz2
vz215_np1915-96cfab1375e1b2a3f7af689fbd875c836832eb20.zip
Merge branch 'alternative-method'
-rwxr-xr-xtrain.py93
1 files changed, 53 insertions, 40 deletions
diff --git a/train.py b/train.py
index 69806fc..91fe483 100755
--- a/train.py
+++ b/train.py
@@ -59,15 +59,16 @@ def test_split(n_faces, raw_faces, split, seed):
return faces_train, faces_test, target_train, target_test
def draw_conf_mat(args, target_test, target_pred):
- cm = confusion_matrix(target_test, target_pred)
acc_sc = accuracy_score(target_test, target_pred)
- print('Accuracy: ', acc_sc)
- if (args.conf_mat):
- plt.matshow(cm, cmap='Blues')
- plt.colorbar()
- plt.ylabel('Actual')
- plt.xlabel('Predicted')
- plt.show()
+ if not args.classifyalt:
+ cm = confusion_matrix(target_test, target_pred)
+ print('Accuracy: ', acc_sc)
+ if (args.conf_mat):
+ plt.matshow(cm, cmap='Blues')
+ plt.colorbar()
+ plt.ylabel('Actual')
+ plt.xlabel('Predicted')
+ plt.show()
return acc_sc
def test_model(M, faces_train, faces_test, target_train, target_test, args):
@@ -87,12 +88,10 @@ def test_model(M, faces_train, faces_test, target_train, target_test, args):
faces_train = normalise_faces(average_face, faces_train)
faces_test = normalise_faces(average_face, faces_test)
if (args.pca_r):
- print('Reduced PCA')
e_vals, e_vecs = LA.eigh(np.dot(faces_train, faces_train.T))
e_vecs = np.dot(faces_train.T, e_vecs)
e_vecs = e_vecs/LA.norm(e_vecs, axis = 0)
else:
- print('Standard PCA')
e_vals, e_vecs = LA.eigh(np.cov(faces_train.T))
# e_vecs = normalise_faces(np.mean(e_vecs,axis=0), e_vecs)
#PLOTTING NON-ZERO EVALS
@@ -104,18 +103,16 @@ def test_model(M, faces_train, faces_test, target_train, target_test, args):
e_vecs = np.fliplr(e_vecs).T[:M]
deviations_tr = np.flip(deviations_tr)
deviations_tst = np.flip(deviations_tst)
- if (args.classifyalt):
- faces_train = np.mean(faces_train.reshape([n_faces,8,2576]), axis=1)
- target_train = range(n_faces)
- raw_faces_train = np.mean(raw_faces_train.reshape([n_faces,8,2576]), axis=1)
faces_train = np.dot(faces_train, e_vecs.T)
faces_test = np.dot(faces_test, e_vecs.T)
- if (args.reconstruct):
+ distances = np.zeros(faces_test.shape[0])
+ for i in range(faces_test.shape[0]):
+ norm = LA.norm(faces_train - np.tile(faces_test[i], (faces_train.shape[0], 1)), axis=1)
+ distances[i] = np.amin(norm)
+
+ if args.reconstruct:
rec_vec = np.add(average_face, np.dot(faces_train[args.reconstruct], e_vecs) * deviations_tr)
- rec_faces_test = np.add(average_face, np.dot(faces_test, e_vecs) * deviations_tst)
-#THERE MIGHT BE A RECONSTRUCTION PROBLEM DUE TO DEVIATIONS_TST
- rec_error = LA.norm(np.subtract(raw_faces_train[args.reconstruct], rec_vec))
ar = plt.subplot(2, 1, 1)
ar.imshow(rec_vec.reshape([46,56]).T, cmap = 'gist_gray')
ar = plt.subplot(2, 1, 2)
@@ -163,28 +160,23 @@ def test_model(M, faces_train, faces_test, target_train, target_test, args):
plt.show()
classifier = KNeighborsClassifier(n_neighbors=args.neighbors)
- if (args.reconstruct):
- classifier.fit(raw_faces_train, target_train)
- target_pred = classifier.predict(rec_faces_test)
- #Better Passing n_neighbors = 1
- else:
- classifier.fit(faces_train, target_train)
- target_pred = classifier.predict(faces_test)
- if args.prob:
- targer_prob = classifier.predict_proba(faces_test)
- targer_prob_vec = np.zeros(104)
- for i in range (104):
- j = int(np.floor(i/2))
- targer_prob_vec [i] = targer_prob[i][j]
- avg_targer_prob = np.zeros(n_faces)
- for i in range (n_faces):
- avg_targer_prob[i] = (targer_prob_vec[2*i] + targer_prob_vec[2*i + 1])/2
+ classifier.fit(faces_train, target_train)
+ target_pred = classifier.predict(faces_test)
+ if args.prob:
+ targer_prob = classifier.predict_proba(faces_test)
+ targer_prob_vec = np.zeros(104)
+ for i in range (104):
+ j = int(np.floor(i/2))
+ targer_prob_vec [i] = targer_prob[i][j]
+ avg_targer_prob = np.zeros(n_faces)
+ for i in range (n_faces):
+ avg_targer_prob[i] = (targer_prob_vec[2*i] + targer_prob_vec[2*i + 1])/2
#WE CAN FIX THIS BY RESHAPING TARGER_PROB_VEC AND TAKING THE MEAN ON THE RIGHT AXIS
- plt.bar(range(n_faces), avg_targer_prob)
- plt.show()
+ plt.bar(range(n_faces), avg_targer_prob)
+ plt.show()
#Better n_neighbors = 2
- return draw_conf_mat(args, target_test, target_pred)
+ return draw_conf_mat(args, target_test, target_pred), distances
def main():
parser = argparse.ArgumentParser()
@@ -213,12 +205,33 @@ def main():
targets = np.repeat(np.arange(n_faces),n_cases)
faces_train, faces_test, target_train, target_test = test_split(n_faces, raw_faces, args.split, args.seed)
-
+
+ if args.classifyalt:
+ faces_train = faces_train.reshape(n_faces, 8, n_pixels)
+ target_train = target_train.reshape(n_faces, 8)
+
+ accuracy = np.zeros(n_faces)
+ distances = np.zeros((n_faces, faces_test.shape[0]))
+ for i in range(n_faces):
+ accuracy[i], distances[i] = test_model(args.eigen, faces_train[i], faces_test, target_train[i], target_test, args)
+ target_pred = np.argmin(distances, axis=0)
+ acc_sc = accuracy_score(target_test, target_pred)
+ cm = confusion_matrix(target_test, target_pred)
+ print('Total Accuracy: ', acc_sc)
+ if (args.conf_mat):
+ plt.matshow(cm, cmap='Blues')
+ plt.colorbar()
+ plt.ylabel('Actual')
+ plt.xlabel('Predicted')
+ plt.show()
+ return
+
if args.reigen:
- accuracy = np.zeros(args.reigen - args.eigen)
+ accuracy = np.zeros(n_faces)
+ rec_error = np.zeros(n_faces)
for M in range(args.eigen, args.reigen):
start = timer()
- accuracy[M - args.eigen] = test_model(M, faces_train, faces_test, target_train, target_test, args)
+ accuracy[M - args.eigen], rec_error[M - args.eigen] = test_model(M, faces_train, faces_test, target_train, target_test, args)
end = timer()
print("Run with", M, "eigenvalues completed in ", end-start, "seconds")
print("Memory Used:", psutil.Process(os.getpid()).memory_info().rss)