aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authornunzip <np.scarh@gmail.com>2018-12-13 20:43:39 +0000
committernunzip <np.scarh@gmail.com>2018-12-13 20:43:39 +0000
commitceb4a157b77b0740a31d764cbd6222fae767f095 (patch)
tree15b6e85c8288bf70446eab30f2c389e7b2df2167
parent95f25f18f6af9a2faa08ea288c91bb7d21a4eb5b (diff)
downloadvz215_np1915-ceb4a157b77b0740a31d764cbd6222fae767f095.tar.gz
vz215_np1915-ceb4a157b77b0740a31d764cbd6222fae767f095.tar.bz2
vz215_np1915-ceb4a157b77b0740a31d764cbd6222fae767f095.zip
Include link to manual, Fix README layout
-rw-r--r--README.md60
-rwxr-xr-xreport/metadata.yaml2
2 files changed, 32 insertions, 30 deletions
diff --git a/README.md b/README.md
index e89f6db..d60a3fc 100644
--- a/README.md
+++ b/README.md
@@ -1,4 +1,5 @@
```
+
usage: evaluate.py [-h] [-t] [-c] [-k] [-m] [-e] [-r] [-a RERANKA]
[-b RERANKB] [-l RERANKL] [-n NEIGHBORS] [-v] [-s SHOWRANK]
[-1] [-2] [-M MULTRANK] [-C] [--data DATA] [-K KMEAN] [-A]
@@ -35,50 +36,51 @@ optional arguments:
Perform Kmean clustering, KMEAN number of clusters
-A, --mAP Display Mean Average Precision
-P PCA, --PCA PCA Perform pca with PCA eigenvectors
+
```
EXAMPLES for `evaluate.py`:
- EXAMPLE 1: Run euclidean distance with top n
- `evaluate.py -e -n 10` or simply `evaluate.py -n 10`
+EXAMPLE 1: Run euclidean distance with top n
+ `evaluate.py -e -n 10` or simply `evaluate.py -n 10`
- EXAMPLE 2: Run euclidean distance for the first 10 values of top n and graph them
- `evaluate.py -M 10`
+EXAMPLE 2: Run euclidean distance for the first 10 values of top n and graph them
+ `evaluate.py -M 10`
- EXAMPLE 3: Run comparison between baseline and rerank for the first 5 values of top n and graph them
- `evaluate.py -M 5 -C`
+EXAMPLE 3: Run comparison between baseline and rerank for the first 5 values of top n and graph them
+ `evaluate.py -M 5 -C`
- EXAMPLE 4: Run for kmeans, 10 clusters
- `evaluate.py -K 10`
+EXAMPLE 4: Run for kmeans, 10 clusters
+ `evaluate.py -K 10`
- EXAMPLE 5: Run for mahalanobis, using PCA for top 100 eigenvectors to speed up the calculation
- `evaluate.py -m -P 100`
+EXAMPLE 5: Run for mahalanobis, using PCA for top 100 eigenvectors to speed up the calculation
+ `evaluate.py -m -P 100`
- EXAMPLE 6: Run rerank for customized values of RERANKA, RERANKB and RERANKL
- `evaluate.py -r -a 11 -b 3 -l 0.3`
+EXAMPLE 6: Run rerank for customized values of RERANKA, RERANKB and RERANKL
+ `evaluate.py -r -a 11 -b 3 -l 0.3`
- EXAMPLE 7: Run on the training set with euclidean distance and normalize feature vectors. Draw confusion matrix at the end.
- `evaluate.py -t -1 -c`
+EXAMPLE 7: Run on the training set with euclidean distance and normalize feature vectors. Draw confusion matrix at the end.
+ `evaluate.py -t -1 -c`
- EXAMPLE 8: Run euclidean distance standardising the feature data for the first 10 values of top n and graph them.
- `evaluate.py -2 -M 10`
+EXAMPLE 8: Run euclidean distance standardising the feature data for the first 10 values of top n and graph them.
+ `evaluate.py -2 -M 10`
- EXAMPLE 8: Run for rerank top 10 and save the names of the images that compose the ranklist for the first 5 queries: query.txt, ranklist.txt.
- `evaluate.py -r -s 5 -n 10`
+EXAMPLE 8: Run for rerank top 10 and save the names of the images that compose the ranklist for the first 5 queries: query.txt, ranklist.txt.
+ `evaluate.py -r -s 5 -n 10`
- EXAMPLE 9: Display mAP. It is advisable to use high n to obtain an accurate results.
- `evaluate.py -A -n 5000`
+EXAMPLE 9: Display mAP. It is advisable to use high n to obtain an accurate results.
+ `evaluate.py -A -n 5000`
- EXAMPLE 10: Run euclidean distance specifying a different data folder location
- for data int the same folder as evaluate.py:
- `evaluate.py --data ./`
- or for data in another folder:
- `evaluate.py --data ./foo/bar/`
+EXAMPLE 10: Run euclidean distance specifying a different data folder location
+ for data int the same folder as evaluate.py:
+ `evaluate.py --data ./`
+ or for data in another folder:
+ `evaluate.py --data ./foo/bar/`
EXAMPLES for `opt.py`:
- EXAMPLE 1: optimize top 1 accuracy for k1, k2, lambda speeding up the process with PCA, top 50 eigenvectors
- `opt.py -P 50`
+EXAMPLE 1: optimize top 1 accuracy for k1, k2, lambda speeding up the process with PCA, top 50 eigenvectors
+ `opt.py -P 50`
- EXAMPLE 2: optimize mAP for k1, k2, lambda speeding up the process with PCA, top 50 eigenvectors
- `opt.py -P 50 -A`
+EXAMPLE 2: optimize mAP for k1, k2, lambda speeding up the process with PCA, top 50 eigenvectors
+ `opt.py -P 50 -A`
diff --git a/report/metadata.yaml b/report/metadata.yaml
index 5f9f737..e4d4470 100755
--- a/report/metadata.yaml
+++ b/report/metadata.yaml
@@ -3,7 +3,7 @@ title: 'EE4-68 Pattern Recognition (2018-2019) CW2'
author:
- name: Vasil Zlatanov (01120518), Nunzio Pucci (01113180)
email: vz215@ic.ac.uk, np1915@ic.ac.uk
- link: 'Sources: < [git](https://git.skozl.com/e4-pattern/) - [tar](https://git.skozl.com/e4-pattern/snapshot/vz215_np1915-master.tar.gz) - [zip](https://git.skozl.com/e4-pattern/snapshot/vz215_np1915-master.zip) >'
+ link: 'Sources: < [git](https://git.skozl.com/e4-pattern/) - [tar](https://git.skozl.com/e4-pattern/snapshot/vz215_np1915-master.tar.gz) - [zip](https://git.skozl.com/e4-pattern/snapshot/vz215_np1915-master.zip) - [manual](https://git.skozl.com/e4-pattern/about/) >'
numbersections: yes
lang: en
babel-lang: english